keras之dropout

本文探讨了使用Dropout和权重约束来提高神经网络性能的方法,包括在输入层和隐藏层应用Dropout,以及设置最大范数约束,展示了这些技术如何影响模型精度。

1,在input第一层之间加droppout

2.在hiddenlayer中加

W_constraint=maxnorm(3)是原始论文里面建议的认为系数最好不要超过3

import numpy
import pandas
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.wrappers.scikit_learn import KerasClassifier
from keras.constraints import maxnorm
from keras.optimizers import SGD
from sklearn.cross_validation import cross_val_score
from sklearn.preprocessing import LabelEncoder
from sklearn.cross_validation import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.grid_search import GridSearchCV
from sklearn.pipeline import Pipeline
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load dataset
dataframe = pandas.read_csv("../data/sonar.csv", header=None)
dataset = dataframe.values
# split into input (X) and output (Y) variables
X = dataset[:,0:60].astype(float)
Y = dataset[:,60]
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)


# baseline
def create_baseline():
	# create model
	model = Sequential()
	model.add(Dense(60, input_dim=60, init='normal', activation='relu'))
	model.add(Dense(30, init='normal', activation='relu'))
	model.add(Dense(1, init='normal', activation='sigmoid'))
	# Compile model
	sgd = SGD(lr=0.01, momentum=0.8, decay=0.0, nesterov=False)
	model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
	return model

numpy.random.seed(seed)
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasClassifier(build_fn=create_baseline, nb_epoch=300, batch_size=16, verbose=0)))
pipeline = Pipeline(estimators)
kfold = StratifiedKFold(y=encoded_Y, n_folds=10, shuffle=True, random_state=seed)
results = cross_val_score(pipeline, X, encoded_Y, cv=kfold)
print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
# Accuracy: 82.68% (3.90%)


# dropout in the input layer with weight constraint
def create_model1():
	# create model
	model = Sequential()
	model.add(Dropout(0.2, input_shape=(60,)))
	model.add(Dense(60, init='normal', activation='relu', W_constraint=maxnorm(3)))
	model.add(Dense(30, init='normal', activation='relu', W_constraint=maxnorm(3)))
	model.add(Dense(1, init='normal', activation='sigmoid'))
	# Compile model
	sgd = SGD(lr=0.1, momentum=0.9, decay=0.0, nesterov=False)
	model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
	return model

numpy.random.seed(seed)
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasClassifier(build_fn=create_model1, nb_epoch=300, batch_size=16, verbose=0)))
pipeline = Pipeline(estimators)
kfold = StratifiedKFold(y=encoded_Y, n_folds=10, shuffle=True, random_state=seed)
results = cross_val_score(pipeline, X, encoded_Y, cv=kfold)
print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
# Accuracy: 86.04% (6.33%)


# dropout in hidden layers with weight constraint
def create_model2():
	# create model
	model = Sequential()
	model.add(Dense(60, input_dim=60, init='normal', activation='relu', W_constraint=maxnorm(3)))
	model.add(Dropout(0.2))
	model.add(Dense(30, init='normal', activation='relu', W_constraint=maxnorm(3)))
	model.add(Dropout(0.2))
	model.add(Dense(1, init='normal', activation='sigmoid'))
	# Compile model
	sgd = SGD(lr=0.1, momentum=0.9, decay=0.0, nesterov=False)
	model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
	return model

numpy.random.seed(seed)
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasClassifier(build_fn=create_model2, nb_epoch=300, batch_size=16, verbose=0)))
pipeline = Pipeline(estimators)
kfold = StratifiedKFold(y=encoded_Y, n_folds=10, shuffle=True, random_state=seed)
results = cross_val_score(pipeline, X, encoded_Y, cv=kfold)
print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
# Accuracy: 82.16% (6.16%)

几个建议

1.dropout在0.2~0.5之间,一般0.2就挺好的

2.input也可以用,不止是hiddenlayer

3. Use a larger network. You are likely to get better performance when dropout is used on a larger network, giving the model more of an opportunity to learn independent representations.
4. Use a large learning rate with decay and a large momentum. Increase your learning rate by a factor of 10 to 100 and use a high momentum value of 0.9 or 0.99.
5. Constrain the size of network weights. A large learning rate can result in very large network weights. Imposing a constraint on the size of network weights such as max-norm regularization with a size of 4 or 5 has been shown to improve results 

 

### Dropout 层的参数及其用法 Dropout 是一种用于防止神经网络过拟合的有效正则化技术[^2]。其核心思想是在训练过程中随机丢弃一部分神经元,从而减少模型对某些特定特征的依赖,提高泛化能力。 #### 1. **Dropout 的主要参数** Dropout 层的主要参数是 `rate` 或称为 dropout rate(丢弃率)。该参数定义了在每次前向传播中被临时移除的神经元比例。通常情况下,`rate` 取值范围为 `[0, 1)`,表示保留的比例为 `(1 - rate)`。 - 当 `rate=0` 时,没有任何神经元会被丢弃。 - 当 `rate=1` 时,理论上所有神经元都会被丢弃,但这并不实际应用,因为此时网络无法传递任何信息。 常见的取值范围通常是 `0.2` 到 `0.5` 左右,具体取决于数据集和模型结构的需求。 #### 2. **Dropout 的实现方式** 以下是使用 TensorFlow/Keras 实现 Dropout 层的一个简单例子: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout model = Sequential([ Dense(128, activation='relu', input_shape=(input_dim,)), Dropout(rate=0.5), # 添加 Dropout 层,丢弃率为 0.5 Dense(64, activation='relu'), Dropout(rate=0.3), # 再次添加 Dropout 层,丢弃率为 0.3 Dense(num_classes, activation='softmax') ]) ``` 在这个例子中,第一个 Dropout 层设置了 `rate=0.5`,意味着一半的神经元会在训练期间被随机关闭;第二个 Dropout 层设置了 `rate=0.3`,即有 30% 的神经元会暂时失效。 #### 3. **Dropout 的作用机制** Dropout 的工作原理可以理解为,在每一次迭代中构建了一个新的“子网络”,这个子网络是由原始网络中的部分神经元组成。由于每次迭代都可能生成不同的子网络组合,因此最终的效果相当于集成学习的一种形式——通过平均多个子网络的结果来降低方差并提升泛化性能。 需要注意的是,Dropout 仅在训练阶段生效。在测试或推理阶段,所有的神经元都将重新启用,并且权重会按一定比例缩放以补偿训练过程中的丢失效应。 --- ####
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值