PAT甲级1066
题目:
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
题目大意:给出一组数据,建立AVL,打印最终的根节点
简单的建AVL过程,注意左旋右旋以及插入功能里要传入引用
#include <iostream>
#include <vector>
using namespace std;
struct node{
int data,height;
node *left,*right;
};
typedef node* Node;
int getHeight(Node root){ //获得当前节点高度
if(root==NULL) return 0;
return root->height;
}
int getBalanceFactor(Node root){ //获取平衡因子
return getHeight(root->left)-getHeight(root->right);
}
void updateHeight(Node root){ //更新树高
root->height=max(getHeight(root->left),getHeight(root->right))+1;
}
void leftRotation(Node &root){ //左旋
Node tmp=root->right;
root->right=tmp->left;
tmp->left=root;
updateHeight(root);
updateHeight(tmp);
root=tmp;
}
void rightRotation(Node &root){ //右旋
Node tmp=root->left;
root->left=tmp->right;
tmp->right=root;
updateHeight(root);
updateHeight(tmp);
root=tmp;
}
Node newNode(int data){
Node root=new node;
root->data=data,root->height=1;
root->left=root->right=NULL;
return root;
}
void insert(Node &root,int data){
if(root==NULL){
root=newNode(data);
return ;
}
if(data<root->data){
insert(root->left,data);
updateHeight(root);
if(getBalanceFactor(root)==2){ //若在左子树中插入节点使得整棵树不平衡
if(getBalanceFactor(root->left)==1){ //在左子树的左子树中插入节点不平衡,LL型
rightRotation(root);
}else if(getBalanceFactor(root->left)==-1){ //在左子树的右子树中插入节点不平衡,LR型
leftRotation(root->left);
rightRotation(root);
}
}
}else{
insert(root->right,data);
updateHeight(root);
if(getBalanceFactor(root)==-2){ //若在右子树中插入节点使得整棵树不平衡
if(getBalanceFactor(root->right)==-1){ //在右子树的右子树中插入节点不平衡,RR型
leftRotation(root);
}else if(getBalanceFactor(root->right)==1){ //在右子树的左子树中插入节点不平衡,RL型
rightRotation(root->right);
leftRotation(root);
}
}
}
}
int main(){
int n,tmp;
scanf("%d",&n);
Node root=NULL;
for(int i=0;i<n;i++){
scanf("%d",&tmp);
insert(root,tmp);
}
printf("%d",root->data);
system("pause");
return 0;
}