Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.


方法一:相当于求C(m+n,m),可以用递推公式C(x,y) = C(x-1,y-1) + C(x-1,y)

方法二:用动态规划,每次只能向右向下,所以(n,m)处的方法是走到(n-1,m)向右一步或者C(n,m-1)向下一步。

所以F(n,m) = F(n-1,m) + F(n,m-1)。代码如下:

class Solution {
public:
    int uniquePaths(int m, int n) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        int a[100][100];
        for(int i = 0;i < n;i++)
            a[i][0] = 1;
        for(int j = 0;j < m;j++)
            a[0][j] = 1;
            
        for(int i = 1;i < n;i++)
        {
            for(int j = 1;j < m;j++)
            {
                a[i][j] = a[i-1][j] + a[i][j-1];
            }
        }
        return a[n-1][m-1];
    }
};

8 milli secs


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值