Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e.,
2 + 3 + 5 +
1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where
n is the total number of rows in the triangle.
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
for(int i = triangle.size()-2;i >= 0;i--)
{
for(int j = 0;j < triangle[i].size();j++)
triangle[i][j] += min(triangle[i+1][j],triangle[i+1][j+1]);
}
return triangle[0][0];
}
};
48 milli secs
Time:O(n^2),space: no extra