A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题意:从start位置开始,只能向下或者向右,有多少条路径可以达到Finish。
思路:用动态规划的思路,例如最后要达到Finish的位置,有两个位置可以达到,那把这两个位置的数目加起来就是总的条数。这样往上推倒即可。
public int uniquePaths(int m, int n) {
int[][] a = new int[m][n];
for (int i = 0; i < m; i++) {
a[i][0] = 1;
}
for (int i = 0; i < n; i++) {
a[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
a[i][j] = a[i-1][j] + a[i][j-1];
}
}
return a[m-1][n-1];
}
PS:好一段时间没更新了,在北京出差实在是忙的没时间,这个星期回到杭州,继续保持更新,坚持就是胜利。
不要让自己的生命留下遗憾,做自己想做的事情。