Imshow直接显示图像到窗口控件 good!!

本文介绍如何将OpenCV窗口嵌入到MFC界面的PictureControl控件中,并实现鼠标交互功能。通过调整窗口属性及绑定MAT图像,使得OpenCV处理结果能够无缝融入GUI界面,适用于图像处理应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OpenCV的窗口添加到PictureControl里面,这样你可以继续使用OpenCV的setMouseCallback直接对PictureControl进行鼠标操作。
首先在你的OnInit函数中添加如下
namedWindow("view", WINDOW_AUTOSIZE);
HWND hWnd = (HWND) cvGetWindowHandle("view");
HWND hParent = ::GetParent(hWnd);
::SetParent(hWnd, GetDlgItem(IDC_STATIC_CV)->m_hWnd);
::ShowWindow(hParent, SW_HIDE);
上面就是打开一个名为view的OpenCV窗口,并将其放置到一个ID为IDC_STATIC_CV的PictureControl里面,这个控件的类型需要是rectangle。当你在需要显示某图片的时候,就像在OpenCV里面显示一样就可以了。
imshow("view", mat);



void CMfcRibbonTemplateView::OnInitialUpdate() { CFormView::OnInitialUpdate(); GetParentFrame()->RecalcLayout(); ResizeParentToFit(); //根据控件的大小设置初始帧的大小 CRect rect; GetDlgItem(IDC_PBSRC) ->GetClientRect( &rect ); // 获取控件尺寸位置 m_lframe = Mat::zeros(rect.Height(),rect.Width(),CV_8UC3); GetDlgItem(IDC_PBSRC) ->GetClientRect( &rect ); m_rframe = Mat::zeros(rect.Height(),rect.Width(),CV_8UC3); //绑定Mat到Picturebox上去 namedWindow("src",WINDOW_AUTOSIZE); HWND hWnd = (HWND)cvGetWindowHandle("src"); HWND hParnt = ::GetParent(hWnd); ::SetParent(hWnd,GetDlgItem(IDC_PBSRC)->m_hWnd); ::ShowWindow(hParnt,SW_HIDE); namedWindow("dst",WINDOW_AUTOSIZE); hWnd = (HWND)cvGetWindowHandle("dst"); hParnt = ::GetParent(hWnd); ::SetParent(hWnd,GetDlgItem(IDC_PBDEST)->m_hWnd); ::ShowWindow(hParnt,SW_HIDE); }
 
void CMfcRibbonTemplateView::OnSize(UINT nType, int cx, int cy) { CFormView::OnSize(nType, cx, cy); CWnd* pwndsrc = GetDlgItem(IDC_PBSRC); CWnd* pwnddst = GetDlgItem(IDC_PBDEST); //计算出长宽,这里的长宽是按照比例的,图像居中显示 int iblank = 15//边界空余 int iwidth = cx/2-iblank*2; int iheight =(int)(iwidth*0.75); if (pwndsrc->GetSafeHwnd() && pwnddst->GetSafeHwnd()){ pwndsrc->MoveWindow(iblank,(cy-iheight)*0.4,iwidth,iheight); pwnddst->MoveWindow(cx/2+iblank,(cy-iheight)*0.4,iwidth,iheight); } }
 
void CMfcRibbonTemplateView::showimage(Mat& src, UINT ID) { if (src.empty()) return; CRect rect; Mat dst = src.clone(); GetDlgItem(ID) ->GetClientRect( &rect ); // 获取控件尺寸位置 if (dst.channels() == 1) cvtColor(dst, dst, CV_GRAY2BGR); resize(dst,dst,Size(rect.Width(),rect.Height())); imshow("src",dst); }






你给我的这个代码在运行过程中还是没有自动检测,可不可以这个代码的模板匹配模块那边的保存标准样本和预览样本给改成每一帧截取时与标准样本的特征比对值(不要改变原本的界面功能键)下面是目前代码 # -*- coding: utf-8 -*- import sys import os import cv2 import numpy as np import math import time import logging from collections import deque from PyQt5.QtWidgets import ( QApplication, QMainWindow, QPushButton, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QLabel, QFileDialog, QToolBox, QComboBox, QStatusBar, QGroupBox, QSlider, QDockWidget, QProgressDialog, QLineEdit, QRadioButton, QGridLayout, QSpinBox, QCheckBox, QDialog, QDialogButtonBox, QDoubleSpinBox, QProgressBar ) from PyQt5.QtCore import QRect, Qt, QSettings, QThread, pyqtSignal, QTimer from PyQt5.QtGui import QImage, QPixmap from CamOperation_class import CameraOperation from MvCameraControl_class import * import ctypes from ctypes import cast, POINTER from datetime import datetime import skimage import platform from CameraParams_header import ( MV_GIGE_DEVICE, MV_USB_DEVICE, MV_GENTL_CAMERALINK_DEVICE, MV_GENTL_CXP_DEVICE, MV_GENTL_XOF_DEVICE ) # ===== 全局配置 ===== # 模板匹配参数 MATCH_THRESHOLD = 0.75 # 降低匹配置信度阈值以提高灵敏度 MIN_MATCH_COUNT = 10 # 最小匹配特征点数量 MIN_FRAME_INTERVAL = 0.1 # 最小检测间隔(秒) # ===== 全局变量 ===== current_sample_path = "" detection_history = [] isGrabbing = False isOpen = False obj_cam_operation = None frame_monitor_thread = None template_matcher_thread = None MV_OK = 0 MV_E_CALLORDER = -2147483647 # ==================== 优化后的质量检测算法 ==================== def enhanced_check_print_quality(sample_image_path, test_image, threshold=0.05): # 不再使用传感器数据调整阈值 adjusted_threshold = threshold try: sample_img_data = np.fromfile(sample_image_path, dtype=np.uint8) sample_image = cv2.imdecode(sample_img_data, cv2.IMREAD_GRAYSCALE) if sample_image is None: logging.error(f"无法解码样本图像: {sample_image_path}") return None, None, None except Exception as e: logging.exception(f"样本图像读取异常: {str(e)}") return None, None, None if len(test_image.shape) == 3: test_image_gray = cv2.cvtColor(test_image, cv2.COLOR_BGR2GRAY) else: test_image_gray = test_image.copy() sample_image = cv2.GaussianBlur(sample_image, (5, 5), 0) test_image_gray = cv2.GaussianBlur(test_image_gray, (5, 5), 0) try: # 使用更鲁棒的SIFT特征检测器 sift = cv2.SIFT_create() keypoints1, descriptors1 = sift.detectAndCompute(sample_image, None) keypoints2, descriptors2 = sift.detectAndCompute(test_image_gray, None) if descriptors1 is None or descriptors2 is None: logging.warning("无法提取特征描述符,跳过配准") aligned_sample = sample_image else: # 使用FLANN匹配器提高匹配精度 FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(descriptors1, descriptors2, k=2) # 应用Lowe's比率测试筛选优质匹配 good_matches = [] for m, n in matches: if m.distance < 0.7 * n.distance: good_matches.append(m) if len(good_matches) > MIN_MATCH_COUNT: src_pts = np.float32([keypoints1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([keypoints2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) if H is not None: aligned_sample = cv2.warpPerspective( sample_image, H, (test_image_gray.shape[1], test_image_gray.shape[0]) ) logging.info("图像配准成功,使用配准后样本") else: aligned_sample = sample_image logging.warning("无法计算单应性矩阵,使用原始样本") else: aligned_sample = sample_image logging.warning(f"特征点匹配不足({len(good_matches)}/{MIN_MATCH_COUNT}),跳过图像配准") except Exception as e: logging.error(f"图像配准失败: {str(e)}") aligned_sample = sample_image try: if aligned_sample.shape != test_image_gray.shape: test_image_gray = cv2.resize(test_image_gray, (aligned_sample.shape[1], aligned_sample.shape[0])) except Exception as e: logging.error(f"图像调整大小失败: {str(e)}") return None, None, None try: from skimage.metrics import structural_similarity as compare_ssim ssim_score, ssim_diff = compare_ssim( aligned_sample, test_image_gray, full=True, gaussian_weights=True, data_range=255 ) except ImportError: from skimage.measure import compare_ssim ssim_score, ssim_diff = compare_ssim( aligned_sample, test_image_gray, full=True, gaussian_weights=True ) except Exception as e: logging.error(f"SSIM计算失败: {str(e)}") abs_diff = cv2.absdiff(aligned_sample, test_image_gray) ssim_diff = abs_diff.astype(np.float32) / 255.0 ssim_score = 1.0 - np.mean(ssim_diff) ssim_diff = (1 - ssim_diff) * 255 abs_diff = cv2.absdiff(aligned_sample, test_image_gray) combined_diff = cv2.addWeighted(ssim_diff.astype(np.uint8), 0.7, abs_diff, 0.3, 0) _, thresholded = cv2.threshold(combined_diff, 30, 255, cv2.THRESH_BINARY) kernel = np.ones((3, 3), np.uint8) thresholded = cv2.morphologyEx(thresholded, cv2.MORPH_OPEN, kernel) thresholded = cv2.morphologyEx(thresholded, cv2.MORPH_CLOSE, kernel) diff_pixels = np.count_nonzero(thresholded) total_pixels = aligned_sample.size diff_ratio = diff_pixels / total_pixels is_qualified = diff_ratio <= adjusted_threshold marked_image = cv2.cvtColor(test_image_gray, cv2.COLOR_GRAY2BGR) marked_image[thresholded == 255] = [0, 0, 255] # 放大缺陷标记 scale_factor = 2.0 # 放大2倍 marked_image = cv2.resize(marked_image, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_LINEAR) labels = skimage.measure.label(thresholded) properties = skimage.measure.regionprops(labels) for prop in properties: if prop.area > 50: y, x = prop.centroid # 根据放大比例调整坐标 x_scaled = int(x * scale_factor) y_scaled = int(y * scale_factor) cv2.putText(marked_image, f"Defect", (x_scaled, y_scaled), cv2.FONT_HERSHEY_SIMPLEX, 0.5 * scale_factor, (0, 255, 255), int(scale_factor)) return is_qualified, diff_ratio, marked_image # ==================== 视觉触发的质量检测流程 ==================== def vision_controlled_check(capture_path=None): global current_sample_path, detection_history logging.info("视觉触发质量检测启动") # 如果没有提供抓拍路径,使用当前帧 if capture_path is None: frame = obj_cam_operation.get_current_frame() else: # 从文件加载抓拍的图像 frame = cv2.imread(capture_path) if frame is None: logging.error(f"无法加载抓拍图像: {capture_path}") frame = obj_cam_operation.get_current_frame() if frame is None: QMessageBox.warning(mainWindow, "错误", "无法获取当前帧图像!", QMessageBox.Ok) return progress = QProgressDialog("正在检测...", "取消", 0, 100, mainWindow) progress.setWindowModality(Qt.WindowModal) progress.setValue(10) try: diff_threshold = mainWindow.sliderDiffThreshold.value() / 100.0 logging.info(f"使用差异度阈值: {diff_threshold}") progress.setValue(30) is_qualified, diff_ratio, marked_image = enhanced_check_print_quality( current_sample_path, frame, threshold=diff_threshold ) progress.setValue(70) if is_qualified is None: QMessageBox.critical(mainWindow, "检测错误", "检测失败,请检查日志", QMessageBox.Ok) return logging.info(f"检测结果: 合格={is_qualified}, 差异={diff_ratio}") progress.setValue(90) update_diff_display(diff_ratio, is_qualified) result_text = f"印花是否合格: {'合格' if is_qualified else '不合格'}\n差异占比: {diff_ratio*100:.2f}%\n阈值: {diff_threshold*100:.2f}%" QMessageBox.information(mainWindow, "检测结果", result_text, QMessageBox.Ok) if marked_image is not None: # 创建可调整大小的窗口 cv2.namedWindow("缺陷标记结果", cv2.WINDOW_NORMAL) cv2.resizeWindow("缺陷标记结果", 800, 600) # 初始大小 cv2.imshow("缺陷标记结果", marked_image) cv2.waitKey(0) cv2.destroyAllWindows() detection_result = { 'timestamp': datetime.now(), 'qualified': is_qualified, 'diff_ratio': diff_ratio, 'threshold': diff_threshold, 'trigger_type': 'vision' if capture_path else 'manual' } detection_history.append(detection_result) update_history_display() progress.setValue(100) except Exception as e: logging.exception("印花检测失败") QMessageBox.critical(mainWindow, "检测错误", f"检测过程中发生错误: {str(e)}", QMessageBox.Ok) finally: progress.close() # ==================== 相机操作函数 ==================== def open_device(): global deviceList, nSelCamIndex, obj_cam_operation, isOpen, frame_monitor_thread, mainWindow if isOpen: QMessageBox.warning(mainWindow, "Error", '相机已打开!', QMessageBox.Ok) return MV_E_CALLORDER nSelCamIndex = mainWindow.ComboDevices.currentIndex() if nSelCamIndex < 0: QMessageBox.warning(mainWindow, "Error", '请选择相机!', QMessageBox.Ok) return MV_E_CALLORDER # 创建相机控制对象 cam = MvCamera() # 初始化相机操作对象 obj_cam_operation = CameraOperation(cam, deviceList, nSelCamIndex) ret = obj_cam_operation.open_device() if 0 != ret: strError = "打开设备失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.O极) isOpen = False else: set_continue_mode() get_param() isOpen = True enable_controls() # 创建并启动帧监控线程 frame_monitor_thread = FrameMonitorThread(obj_cam_operation) frame_monitor_thread.frame_status.connect(mainWindow.statusBar().showMessage) frame_monitor_thread.start() def start_grabbing(): global obj_cam_operation, isGrabbing, template_matcher_thread ret = obj_cam_operation.start_grabbing(mainWindow.widgetDisplay.winId()) if ret != 0: strError = "开始取流失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.Ok) else: isGrabbing = True enable_controls() # 等待第一帧到达 QThread.msleep(500) if not obj_cam_operation.is_frame_available(): QMessageBox.warning(mainWindow, "警告", "开始取流后未接收到帧,请检查相机连接!", QMessageBox.Ok) # 如果启用了自动检测,启动检测线程 if mainWindow.chkAutoDetect.isChecked(): toggle_template_matching(True) def stop_grabbing(): global obj_cam_operation, isGrabbing, template_matcher_thread ret = obj_cam_operation.Stop_grabbing() if ret != 0: strError = "停止取流失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.Ok) else: isGrabbing = False enable_controls() # 停止模板匹配线程 if template_matcher_thread and template_matcher_thread.isRunning(): template_matcher_thread.stop() def close_device(): global isOpen, isGrabbing, obj_cam_operation, frame_monitor_thread, template_matcher_thread if frame_monitor_thread and frame_monitor_thread.isRunning(): frame_monitor_thread.stop() frame_monitor_thread.wait(2000) # 停止模板匹配线程 if template_matcher_thread and template_matcher_thread.isRunning(): template_matcher_thread.stop() template_matcher_thread.wait(2000) template_matcher_thread = None if isOpen and obj_cam_operation: obj_cam_operation.close_device() isOpen = False isGrabbing = False enable_controls() # ==================== 模板匹配检测器 ==================== class TemplateMatcherThread(QThread): template_detected = pyqtSignal(str) # 检测到匹配时发出的信号,传递图像路径 def __init__(self, cam_operation, parent=None): super().__init__(parent) self.cam_operation = cam_operation self.running = True self.last_detection_time = 0 self.sample_template = None self.min_match_count = MIN_MATCH_COUNT self.match_threshold = MATCH_THRESHOLD self.sample_kp = None self.sample_des = None # 特征检测器 - 使用SIFT替代ORB,提高稳定性 self.sift = cv2.SIFT_create() # 特征匹配器 - 使用FLANN提高匹配精度 FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) self.flann = cv2.FlannBasedMatcher(index_params, search_params) # 性能监控 self.processing_times = deque(maxlen=100) # 匹配历史记录 self.match_history = deque(maxlen=10) # 调试窗口 self.debug_enabled = True def set_sample(self, sample_img): """设置标准样本""" if sample_img is None or sample_img.size == 0: return False # 转换为灰度图 if len(sample_img.shape) == 3: # 彩色图像 (BGR) gray_sample = cv2.cvtColor(sample_img, cv2.COLOR_BGR2GRAY) elif len(sample_img.shape) == 2: # 已经是灰度图 gray_sample = sample_img else: logging.warning("不支持的图像格式") return False # 提取特征 self.sample_kp, self.sample_des = self.sift.detectAndCompute(gray_sample, None) if self.sample_des is None or len(self.sample_kp) < self.min_match_count: logging.warning("样本图像特征点不足") return False self.sample_template = sample_img logging.info(f"标准样本设置成功,特征点数: {len(self.sample_kp)}") # 显示样本特征点 if self.debug_enabled: sample_with_kp = cv2.drawKeypoints( gray_sample, self.sample_kp, None, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ) cv2.namedWindow("样本特征点", cv2.WINDOW_NORMAL) cv2.imshow("样本特征点", sample_with_kp) cv2.waitKey(1) return True def match_template(self, frame): """在帧中匹配标准样本""" start_time = time.time() if self.sample_kp is None or self.sample_des is None: return False, None # 转换为灰度图 if len(frame.shape) == 3: gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) else: gray_frame = frame.copy() # 检测当前帧特征点 frame_kp, frame_des = self.sift.detectAndCompute(gray_frame, None) if frame_des is None or len(frame_kp) < self.min_match_count: logging.debug(f"帧特征点不足: {len(frame_kp) if frame_kp else 0}/{self.min_match_count}") return False, None # 匹配特征点 try: matches = self.flann.knnMatch(self.sample_des, frame_des, k=2) except cv2.error as e: logging.error(f"特征匹配失败: {str(e)}") return False, None # 应用Lowe's比率测试筛选优质匹配 good_matches = [] for m, n in matches: if m.distance < 0.7 * n.distance: good_matches.append(m) # 检查匹配质量 if len(good_matches) < self.min_match_count: logging.debug(f"优质匹配不足: {len(good_matches)}/{self.min_match_count}") return False, None # 计算平均匹配距离 avg_distance = sum(m.distance for m in good_matches) / len(good_matches) # 计算匹配分数 (0-1, 1表示完美匹配) # SIFT的距离范围较大,需要调整计算方式 match_score = 1.0 - min(avg_distance / 300.0, 1.0) # 记录匹配历史 self.match_history.append(match_score) # 性能监控 proc_time = time.time() - start_time self.processing_times.append(proc_time) # 检查是否超过阈值 if match_score >= self.match_threshold: # 获取匹配位置 src_pts = np.float32([self.sample_kp[m.queryIdx].pt for m in good_matches]).reshape(-1,1,2) dst_pts = np.float32([frame_kp[m.trainIdx].pt for m in good_matches]).reshape(-1,1,2) # 计算变换矩阵 M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) if M is not None: # 获取样本图像的尺寸 h, w = self.sample_template.shape[:2] if len(self.sample_template.shape) == 2 else self.sample_template.shape[:2][:2] # 计算样本在帧中的位置 pts = np.float32([[0,0], [0,h-1], [w-1,h-1], [w-1,0]]).reshape(-1,1,2) dst = cv2.perspectiveTransform(pts, M) # 调试显示匹配结果 if self.debug_enabled: match_img = cv2.drawMatches( self.sample_template, self.sample_kp, frame, frame_kp, good_matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS ) cv2.namedWindow("特征匹配", cv2.WINDOW_NORMAL) cv2.imshow("特征匹配", match_img) cv2.waitKey(1) return True, (match_score, dst) return False, None def run(self): """主检测循环""" last_process_time = time.time() while self.running: current_time = time.time() # 控制处理频率 if current_time - last_process_time < MIN_FRAME_INTERVAL: time.sleep(0.001) continue last_process_time = current_time if not self.cam_operation or not self.cam_operation.is_frame_available(): time.sleep(0.01) continue frame = self.cam_operation.get_current_frame() if frame is None: continue # 尝试匹配模板 detected, match_data = self.match_template(frame) if detected: self.last_detection_time = current_time match_score, box_points = match_data # 在图像上绘制匹配框 marked_frame = frame.copy() cv2.polylines(marked_frame, [np.int32(box_points)], True, (0,255,0), 3, cv2.LINE_AA) cv2.putText(marked_frame, f"Match: {match_score:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2) # 保存用于质量检测的图像 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") capture_dir = os.path.join("captures", "matches") os.makedirs(capture_dir, exist_ok=True) capture_path = os.path.join(capture_dir, f"match_{timestamp}.jpg") cv2.imwrite(capture_path, marked_frame) # 进行质量检测 self.template_detected.emit(capture_path) logging.info( f"检测到匹配目标 | 匹配度: {match_score:.2f} | " f"阈值: {self.match_threshold}" ) # ==================== 模板匹配控制函数 ==================== def toggle_template_matching(state): global template_matcher_thread, current_sample_path if state == Qt.Checked and isGrabbing: # 确保已设置样本 if not current_sample_path: QMessageBox.warning(mainWindow, "错误", "请先设置标准样本", QMessageBox.Ok) mainWindow.chkAutoDetect.setChecked(False) return if template_matcher_thread is None: template_matcher_thread = TemplateMatcherThread(obj_cam_operation) template_matcher_thread.template_detected.connect(vision_controlled_check) # 加载样本图像 sample_img = cv2.imread(current_sample_path) if sample_img is None: QMessageBox.warning(mainWindow, "错误", "无法加载标准样本图像", QMessageBox.Ok) mainWindow.chkAutoDetect.setChecked(False) return if not template_matcher_thread.set_sample(sample_img): QMessageBox.warning(mainWindow, "错误", "标准样本特征不足", QMessageBox.Ok) mainWindow.chkAutoDetect.setChecked(False) return template_matcher_thread.start() logging.info("模板匹配自动检测已启用") elif template_matcher_thread: template_matcher_thread.stop() logging.info("模板匹配自动检测已禁用") def update_match_threshold(value): global template_matcher_thread if template_matcher_thread: template_matcher_thread.match_threshold = value / 100.0 mainWindow.lblThresholdValue.setText(f"{value}%") # ==================== UI更新函数 ==================== def update_diff_display(diff_ratio, is_qualified): mainWindow.lblCurrentDiff.setText(f"当前差异度: {diff_ratio*100:.2f}%") if is_qualified: mainWindow.lblDiffStatus.setText("状态: 合格") mainWindow.lblDiffStatus.setStyleSheet("color: green; font-size: 12px;") else: mainWindow.lblDiffStatus.setText("状态: 不合格") mainWindow.lblDiffStatus.setStyleSheet("color: red; font-size: 12px;") def update_diff_threshold(value): mainWindow.lblDiffValue.setText(f"{value}%") def update_sample_display(): global current_sample_path if current_sample_path: mainWindow.lblSamplePath.setText(f"当前样本: {os.path.basename(current_sample_path)}") mainWindow.lblSamplePath.setToolTip(current_sample_path) mainWindow.bnPreviewSample.setEnabled(True) else: mainWindow.lblSamplePath.setText("当前样本: 未设置样本") mainWindow.bnPreviewSample.setEnabled(False) def update_history_display(): global detection_history mainWindow.cbHistory.clear() for i, result in enumerate(detection_history[-10:]): timestamp = result['timestamp'].strftime("%H:%M:%S") status = "合格" if result['qualified'] else "不合格" ratio = f"{result['diff_ratio']*100:.2f}%" trigger = "视觉" if result['trigger_type'] == 'vision' else "手动" mainWindow.cbHistory.addItem(f"[{trigger} {timestamp}] {status} - 差异: {ratio}") # ==================== 主窗口类 ==================== class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("布料印花检测系统 - 模板匹配版") self.resize(1200, 800) central_widget = QWidget() self.setCentralWidget(central_widget) main_layout = QVBoxLayout(central_widget) # 设备枚举区域 device_layout = QHBoxLayout() self.ComboDevices = QComboBox() self.bnEnum = QPushButton("枚举设备") self.bnOpen = QPushButton("打开设备") self.bnClose = QPushButton("关闭极设备") device_layout.addWidget(self.ComboDevices) device_layout.addWidget(self.bnEnum) device_layout.addWidget(self.bnOpen) device_layout.addWidget(self.bnClose) main_layout.addLayout(device_layout) # 取流控制组 self.groupGrab = QGroupBox("取流控制") grab_layout = QHBoxLayout(self.groupGrab) self.bnStart = QPushButton("开始取流") self.bnStop = QPushButton("停止取流") self.radioContinueMode = QRadioButton("连续模式") self.radioTriggerMode = QRadioButton("触发模式") self.bnSoftwareTrigger = QPushButton("软触发") grab_layout.addWidget(self.bnStart) grab_layout.addWidget(self.bnStop) grab_layout.addWidget(self.radioContinueMode) grab_layout.addWidget(self.radioTriggerMode) grab_layout.addWidget(self.bnSoftwareTrigger) main_layout.addWidget(self.groupGrab) # 参数设置组 self.paramgroup = QGroupBox("相机参数") param_layout = QGridLayout(self.paramgroup) self.edtExposureTime = QLineEdit() self.edtGain = QLineEdit() self.edtFrameRate = QLineEdit() self.bnGetParam = QPushButton("获取参数") self.bnSetParam = QPushButton("设置参数") self.bnSaveImage = QPushButton("保存图像") param_layout.addWidget(QLabel("曝光时间:"), 0, 0) param_layout.addWidget(self.edtExposureTime, 0, 1) param_layout.addWidget(self.bnGetParam, 0, 2) param_layout.addWidget(QLabel("增益:"), 1, 0) param_layout.addWidget(self.edtGain, 1, 1) param_layout.addWidget(self.bnSetParam, 1, 2) param_layout.addWidget(QLabel("帧率:"), 2, 0) param_layout.addWidget(self.edtFrameRate, 2, 1) param_layout.addWidget(self.bnSaveImage, 2, 2) main_layout.addWidget(self.paramgroup) # 图像显示区域 self.widgetDisplay = QLabel() self.widgetDisplay.setMinimumSize(640, 480) self.widgetDisplay.setStyleSheet("background-color: black;") self.widgetDisplay.setAlignment(Qt.AlignCenter) self.widgetDisplay.setText("相机预览区域") main_layout.addWidget(self.widgetDisplay, 1) # 创建自定义UI组件 self.setup_custom_ui() def setup_custom_ui(self): # 工具栏 toolbar = self.addToolBar("检测工具") self.bnCheckPrint = QPushButton("手动检测") self.bnSaveSample = QPushButton("保存标准样本") self.bnPreviewSample = QPushButton("预览样本") self.cbHistory = QComboBox() self.cbHistory.setMinimumWidth(300) toolbar.addWidget(self.bnCheckPrint) toolbar.addWidget(self.bnSaveSample) toolbar.addWidget(self.bnPreviewSample) toolbar.addWidget(QLabel("历史记录:")) toolbar.addWidget(self.cbHistory) # 状态栏样本路径 self.lblSamplePath = QLabel("当前样本: 未设置样本") self.statusBar().addPermanentWidget(self.lblSamplePath) # 右侧面板 right_panel = QWidget() right_layout = QVBoxLayout(right_panel) right_layout.setContentsMargins(10, 10, 10, 10) # 差异度调整组 diff_group = QGroupBox("差异度调整") diff_layout = QVBoxLayout(diff_group) self.lblDiffThreshold = QLabel("差异度阈值 (0-100%):") self.sliderDiffThreshold = QSlider(Qt.Horizontal) self.sliderDiffThreshold.setRange(0, 100) self.sliderDiffThreshold.setValue(5) self.lblDiffValue = QLabel("5%") self.lblCurrentDiff = QLabel("当前差异度: -") self.lblCurrentDiff.setStyleSheet("font-size: 14px; font-weight: bold;") self.lblDiffStatus = QLabel("状态: 未检测") self.lblDiffStatus.setStyleSheet("font-size: 12px;") diff_layout.addWidget(self.lblDiffThreshold) diff_layout.addWidget(self.sliderDiffThreshold) diff_layout.addWidget(self.lblDiffValue) diff_layout.addWidget(self.lblCurrentDiff) diff_layout.addWidget(self.lblDiffStatus) right_layout.addWidget(diff_group) # ===== 模板匹配面板 ===== match_group = QGroupBox("模板匹配") match_layout = QVBoxLayout(match_group) # 样本设置 sample_layout = QHBoxLayout() self.bnSetSample = QPushButton("设置标准样本") self.bnPreviewSample = QPushButton("预览样本") self.lblSampleStatus = QLabel("状态: 未设置样本") sample_layout.addWidget(self.bnSetSample) sample_layout.addWidget(self.bnPreviewSample) sample_layout.addWidget(self.lblSampleStatus) match_layout.addLayout(sample_layout) # 匹配参数 param_layout = QHBoxLayout() self.lblMatchThreshold = QLabel("匹配阈值:") self.sliderThreshold = QSlider(Qt.Horizontal) self.sliderThreshold.setRange(50, 100) self.sliderThreshold.setValue(75) # 降低默认阈值 self.lblThresholdValue = QLabel("75%") param_layout.addWidget(self.lblMatchThreshold) param_layout.addWidget(self.sliderThreshold) param_layout.addWidget(self.lblThresholdValue) match_layout.addLayout(param_layout) # 自动检测开关 self.chkAutoDetect = QCheckBox("启用模板匹配自动检测") self.chkAutoDetect.setChecked(False) match_layout.addWidget(self.chkAutoDetect) right_layout.addWidget(match_group) right_layout.addStretch(1) # 停靠窗口 dock = QDockWidget("检测控制面板", self) dock.setWidget(right_panel) dock.setFeatures(QDockWidget.DockWidgetMovable | QDockWidget.DockWidgetFloatable) self.addDockWidget(Qt.RightDockWidgetArea, dock) def closeEvent(self, event): logging.info("主窗口关闭,执行清理...") close_device() event.accept() # ===== 辅助函数 ===== def ToHexStr(num): if not isinstance(num, int): try: num = int(num) except: return f"<非整数:{type(num)}>" chaDic = {10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f'} hexStr = "" if num < 0: num = num + 2 ** 32 while num >= 16: digit = num % 16 hexStr = chaDic.get(digit, str(digit)) + hexStr num //= 16 hexStr = chaDic.get(num, str(num)) + hexStr return "0x" + hexStr def enum_devices(): global deviceList, obj_cam_operation n_layer_type = ( MV_GIGE_DEVICE | MV_USB_DEVICE | MV_GENTL_CAMERALINK_DEVICE | MV_GENTL_CXP_DEVICE | MV_GENTL_XOF_DEVICE ) # 创建设备列表 deviceList = MV_CC_DEVICE_INFO_LIST() # 枚举设备 ret = MvCamera.MV_CC_EnumDevices(n_layer_type, deviceList) if ret != MV_OK: error_msg = f"枚举设备失败! 错误码: 0x{ret:x}" logging.error(error_msg) QMessageBox.warning(mainWindow, "错误", error_msg, QMessageBox.Ok) return ret if deviceList.nDeviceNum == 0: QMessageBox.warning(mainWindow, "提示", "未找到任何设备", QMessageBox.Ok) return MV_OK logging.info(f"找到 {deviceList.nDeviceNum} 个设备") # 处理设备信息 devList = [] for i in range(deviceList.nDeviceNum): # 获取设备信息 mvcc_dev_info = ctypes.cast( deviceList.pDeviceInfo[i], ctypes.POINTER(MV_CC_DEVICE_INFO) ).contents # 根据设备类型提取信息 if mvcc_dev_info.nTLayerType == MV_GIGE_DEVICE: st_gige_info = mvcc_dev_info.SpecialInfo.stGigEInfo ip_addr = ( f"{(st_gige_info.nCurrentIp >> 24) & 0xFF}." f"{(st_gige_info.nCurrentIp >> 16) & 0xFF}." f"{(st_gige_info.nCurrentIp >> 8) & 0xFF}." f"{st_gige_info.nCurrentIp & 0xFF}" ) # 修复:将c_ubyte_Array_16转换为字节串再解码 user_defined_bytes = bytes(st_gige_info.chUserDefinedName) dev_name = f"GigE: {user_defined_bytes.decode('gbk', 'ignore')}" devList.append(f"[{i}] {dev_name} ({ip_addr})") elif mvcc_dev_info.nTLayerType == MV_USB_DEVICE: st_usb_info = mvcc_dev_info.SpecialInfo.stUsb3VInfo serial = bytes(st_usb_info.chSerialNumber).decode('ascii', 'ignore').rstrip('\x00') # 修复:同样处理用户自定义名称 user_defined_bytes = bytes(st_usb_info.chUserDefinedName) dev_name = f"USB: {user_defined_bytes.decode('gbk', 'ignore')}" devList.append(f"[{i}] {dev_name} (SN: {serial})") else: devList.append(f"[{i}] 未知设备类型: {mvcc_dev_info.nTLayerType}") # 更新UI mainWindow.ComboDevices.clear() mainWindow.ComboDevices.addItems(devList) if devList: mainWindow.ComboDevices.setCurrentIndex(0) mainWindow.statusBar().showMessage(f"找到 {deviceList.nDeviceNum} 个设备", 3000) return MV_OK def set_continue_mode(): ret = obj_cam_operation.set_trigger_mode(False) if ret != 0: strError = "设置连续模式失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.Ok) else: mainWindow.radioContinueMode.setChecked(True) mainWindow.radioTriggerMode.setChecked(False) mainWindow.bnSoftwareTrigger.setEnabled(False) def set_software_trigger_mode(): ret = obj_cam_operation.set_trigger_mode(True) if ret != 0: strError = "设置触发模式失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.Ok) else: mainWindow.radioContinueMode.setChecked(False) mainWindow.radioTriggerMode.setChecked(True) mainWindow.bnSoftwareTrigger.setEnabled(isGrabbing) def trigger_once(): ret = obj_cam_operation.trigger_once() if ret != 0: strError = "软触发失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.Ok) def save_sample_image(): global isGrabbing, obj_cam_operation, current_sample_path if not isGrabbing: QMessageBox.warning(mainWindow, "错误", "请先开始取流并捕获图像!", QMessageBox.Ok) return # 尝试捕获当前帧 frame = obj_cam_operation.capture_frame() if frame is None: QMessageBox.warning(mainWindow, "无有效图像", "未捕获到有效图像,请检查相机状态!", QMessageBox.Ok) return # 确保图像有效 if frame.size == 0 or frame.shape[0] == 0 or frame.shape[1] == 0: QMessageBox.warning(mainWindow, "无效图像", "捕获的图像无效,请检查相机设置!", QMessageBox.Ok) return settings = QSettings("ClothInspection", "CameraApp") last_dir = settings.value("last_save_dir", os.path.join(os.getcwd(), "captures")) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") default_filename = f"sample_{timestamp}" file_path, selected_filter = QFileDialog.getSaveFileName( mainWindow, "保存标准样本图像", os.path.join(last_dir, default_filename), "BMP Files (*.bmp);;PNG Files (*.png);;JPEG Files (*.jpg);;所有文件 (*)", options=QFileDialog.DontUseNativeDialog ) if not file_path: return # 确保文件扩展名正确 file_extension = os.path.splitext(file_path)[1].lower() if not file_extension: if "BMP" in selected_filter: file_path += ".b极mp" elif "PNG" in selected_filter: file_path += ".png" elif "JPEG" in selected_filter or "JPG" in selected_filter: file_path += ".jpg" else: file_path += ".bmp" file_extension = os.path.splitext(file_path)[1].lower() # 创建目录(如果不存在) directory = os.path.dirname(file_path) if directory and not os.path.exists(directory): try: os.makedirs(directory, exist_ok=True) except OSError as e: QMessageBox.critical(mainWindow, "目录创建错误", f"无法创建目录 {directory}: {str(e)}", QMessageBox.Ok) return # 保存图像 try: # 使用OpenCV保存图像 if not cv2.imwrite(file_path, frame): raise Exception("OpenCV保存失败") # 更新状态 current_sample_path = file_path update_sample_display() settings.setValue("last_save_dir", os.path.dirname(file_path)) # 显示成功消息 QMessageBox.information(mainWindow, "成功", f"标准样本已保存至:\n{file_path}", QMessageBox.Ok) # 更新样本状态 mainWindow.lblSampleStatus.setText("状态: 样本已设置") mainWindow.lblSampleStatus.setStyleSheet("color: green;") except Exception as e: logging.error(f"保存图像失败: {str(e)}") QMessageBox.critical(mainWindow, "保存错误", f"保存图像时发生错误:\n{str(e)}", QMessageBox.Ok) def preview_sample(): global current_sample_path if not current_sample_path or not os.path.exists(current_sample_path): QMessageBox.warning(mainWindow, "错误", "请先设置有效的标准样本图像!", QMessageBox.Ok) return try: # 直接使用OpenCV加载图像 sample_img = cv2.imread(current_sample_path) if sample_img is None: raise Exception("无法加载图像") # 显示图像 cv2.namedWindow("标准样本预览", cv2.WINDOW_NORMAL) cv2.resizeWindow("标准样本预览", 800, 600) cv2.imshow("标准样本预览", sample_img) cv2.waitKey(0) cv2.destroyAllWindows() except Exception as e: QMessageBox.warning(mainWindow, "错误", f"预览样本失败: {str(e)}", QMessageBox.Ok) def is_float(str): try: float(str) return True except ValueError: return False def get_param(): try: ret = obj_cam_operation.get_parameters() if ret != MV_OK: strError = "获取参数失败,错误码: " + ToHexStr(ret) QMessageBox.warning(mainWindow, "错误", strError, QMessageBox.Ok) else: mainWindow.edtExposureTime.setText("{0:.2f}".format(obj_cam_operation.exposure_time)) mainWindow.edtGain.setText("{0:.2f}".format(obj_cam_operation.gain)) mainWindow.edtFrameRate.setText("{0:.2f}".format(obj_cam_operation.frame_rate)) except Exception as e: error_msg = f"获取参数时发生错误: {str(e)}" QMessageBox.critical(mainWindow, "严重错误", error_msg, QMessageBox.Ok) def set_param(): frame_rate = mainWindow.edtFrameRate.text() exposure = mainWindow.edtExposureTime.text() gain = mainWindow.edtGain.text() if not (is_float(frame_rate) and is_float(exposure) and is_float(gain)): strError = "设置参数失败: 参数必须是有效的浮点数" QMessageBox.warning(mainWindow, "错误", strError, QMessageBox.Ok) return MV_E_PARAMETER try: ret = obj_cam_operation.set_param( frame_rate=float(frame_rate), exposure_time=float(exposure), gain=float(gain) ) if ret != MV_OK: strError = "设置参数失败,错误码: " + ToHexStr(ret) QMessageBox.warning(mainWindow, "错误", strError, QMessageBox.Ok) except Exception as e: error_msg = f"设置参数时发生错误: {str(e)}" QMessageBox.critical(mainWindow, "严重错误", error_msg, QMessageBox.Ok) def enable_controls(): global isGrabbing, isOpen mainWindow.groupGrab.setEnabled(isOpen) mainWindow.paramgroup.setEnabled(isOpen) mainWindow.bnOpen.setEnabled(not isOpen) mainWindow.bnClose.setEnabled(isOpen) mainWindow.bnStart.setEnabled(isOpen and (not isGrabbing)) mainWindow.bnStop.setEnabled(isOpen and isGrabbing) mainWindow.bnSoftwareTrigger.setEnabled(isGrabbing and mainWindow.radioTriggerMode.isChecked()) mainWindow.bnSaveImage.setEnabled(isOpen and isGrabbing) mainWindow.bnCheckPrint.setEnabled(isOpen and isGrabbing) mainWindow.bnSaveSample.setEnabled(isOpen and isGrabbing) mainWindow.bnPreviewSample.setEnabled(bool(current_sample_path)) # 模板匹配控制 mainWindow.chkAutoDetect.setEnabled(bool(current_sample_path) and isGrabbing) # ===== 相机帧监控线程 ===== class FrameMonitorThread(QThread): frame_status = pyqtSignal(str) # 用于发送状态消息的信号 def __init__(self, cam_operation): super().__init__() self.cam_operation = cam_operation self.running = True self.frame_count = 0 self.last_time = time.time() def run(self): """监控相机帧状态的主循环""" while self.running: try: if self.cam_operation and self.cam_operation.is_grabbing: # 获取帧统计信息 frame_info = self.get_frame_info() if frame_info: fps = frame_info.get('fps', 0) dropped = frame_info.get('dropped', 0) status = f"FPS: {fps:.1f} | 丢帧: {dropped}" self.frame_status.emit(status) else: self.frame_status.emit("取流中...") else: self.frame_status.emit("相机未取流") except Exception as e: self.frame_status.emit(f"监控错误: {str(e)}") # 每500ms检查一次 QThread.msleep(500) def stop(self): """停止监控线程""" self.running = False self.wait(1000) # 等待线程结束 def calculate_fps(self): """计算当前帧率""" current_time = time.time() elapsed = current_time - self.last_time if elapsed > 0: fps = self.frame_count / elapsed self.frame_count = 0 self.last_time = current_time return fps return 0 def get_frame_info(self): """获取帧信息""" try: # 更新帧计数 self.frame_count += 1 # 返回帧信息 return { 'fps': self.calculate_fps(), 'dropped': 0 # 实际应用中需要从相机获取真实丢帧数 } except Exception as e: logging.error(f"获取帧信息失败: {str(e)}") return None # ===== 主程序入口 ===== if __name__ == "__main__": # 配置日志系统 logging.basicConfig( level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler("cloth_inspection_template.log"), logging.StreamHandler() ] ) logging.info("布料印花检测系统(模板匹配版)启动") app = QApplication(sys.argv) mainWindow = MainWindow() # 信号连接 mainWindow.sliderDiffThreshold.valueChanged.connect(update_diff_threshold) mainWindow.bnCheckPrint.clicked.connect(lambda: vision_controlled_check(None)) mainWindow.bnSaveSample.clicked.connect(save_sample_image) mainWindow.bnPreviewSample.clicked.connect(preview_sample) mainWindow.bnEnum.clicked.connect(enum_devices) mainWindow.bnOpen.clicked.connect(open_device) mainWindow.bnClose.clicked.connect(close_device) mainWindow.bnStart.clicked.connect(start_grabbing) mainWindow.bnStop.clicked.connect(stop_grabbing) mainWindow.bnSoftwareTrigger.clicked.connect(trigger_once) mainWindow.radioTriggerMode.clicked.connect(set_software_trigger_mode) mainWindow.radioContinueMode.clicked.connect(set_continue_mode) mainWindow.bnGetParam.clicked.connect(get_param) mainWindow.bnSetParam.clicked.connect(set_param) mainWindow.bnSaveImage.clicked.connect(save_sample_image) # 模板匹配信号连接 mainWindow.sliderThreshold.valueChanged.connect(update_match_threshold) mainWindow.chkAutoDetect.stateChanged.connect(toggle_template_matching) mainWindow.show() app.exec_() close_device() sys.exit()
最新发布
07-16
### 回答1: 如果你在使用 OpenCV 的 imshow() 函数时发现图像没有显示出来,可能是以下一些常见问题导致的: 1. 窗口名称不正确:确保窗口名称与 imshow() 函数中指定的名称完全一致。 2. 图像路径不正确:如果你传递的是图像的路径,确保路径是正确的,图片存在,并且你有读取权限。 3. 程序运行太快:如果你的程序在显示图像之前就立即退出了,那么图像可能会瞬间出现然后立即关闭。你可以使用 waitKey() 函数等待按键,或者使用类似于 while(true) 的循环来保持窗口打开状态。 4. 图像大小不正确:如果图像太小,它可能会在窗口显示为一个点或不显示。你可以尝试调整窗口大小或者使用 resize() 函数将图像缩放到更大的尺寸。 5. 操作系统窗口管理问题:有时候操作系统可能会在多个屏幕或多个桌面之间移动窗口或最小化窗口。请确保图像窗口处于活动状态,或者尝试重新启动程序。 希望这些提示可以帮助你解决 imshow() 函数不显示图像的问题。 ### 回答2: OpenCV是一个广泛用于计算机视觉和机器学习的开源库,它提供了一组用来读取、处理和显示图像的函数。其中,imshow()是OpenCV中用于显示图像的函数之一,它通常会在窗口中展示图像。但是,有时候在使用imshow()函数时,会出现图像显示的问题。以下是一些可能导致OpenCV imshow()不显示图像的常见原因: 1. 图像路径错误:imshow()函数需要传入图像的路径,如果路径错误,那么就无法正确地加载图像。 2. 图像读取错误:如果图像文件已经损坏或者格式错误,那么OpenCV就无法正确地读取该文件,因此也无法正确地显示图像。 3. 窗口创建错误:如果我们使用了imshow()函数来显示图像,但是没有正确地创建窗口,那么图像就无法正确地显示。 4. 图像太大:有时候,图像的分辨率太高,会导致imshow()函数无法正确地显示图像,因为屏幕的分辨率有限,我们需要将图像的大小调整到与我们的屏幕匹配。可以使用cv2.resize()函数将图像大小调整为我们需要的大小。 5. 显示时间太短:imshow()函数会在窗口显示图像,但是有时候图像显示的时间太短,我们无法看到它。我们可以使用cv2.waitKey()函数来延迟图像显示时间,以便我们能够看清楚图像。 综上所述,当OpenCV中的imshow()函数不显示图像时,我们需要检查以上可能的原因,确定错误的来源并进行修改。 ### 回答3: OpenCV是一个广泛使用的计算机视觉库,可用于各种图像和视频处理任务。在OpenCV中,imshow()函数是用于显示图像的函数之一,但有时候用户可能会遇到OpenCV imshow显示图像的情况。通常,这种问题可能由以下原因之一引起: 1.编写代码时忘记加waitKey()函数。 显示OpenCV图像的主要机制是在GUI窗口中创建一个事件循环。因此,如果您未使用waitKey()函数来等待用户输入操作,OpenCV imshow函数将只响应进程事件,并立即关闭窗口,因此不会显示图像。 2.图像路径或名称错误。 如果您在命名或路径上犯了拼写错误或语法错误,则OpenCV imshow函数将无法找到图像文件,因此不会成功显示图像。 3.系统环境不兼容。 OpenCV imshow函数需要使用某些功能(如GUI操作),有时候这些操作可能不兼容用户的操作系统或运行环境,因此OpenCV imshow函数可能无法正常工作。 4.图像数据格式错误。 如果您尝试使用OpenCV imshow函数显示其他格式的图像(例如内存缓冲器),OpenCV imshow函数将无法识别和显示这些图像。因此,您需要确保输入数据与OpenCV的要求一致。 如果您遇到了OpenCV imshow显示图像的问题,请确保检查以上几个可能的原因,并确认代码和数据是否符合要求。如果问题仍然存在,请尝试使用其他OpenCV显示函数或与社区寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值