1080 Graduate Admission (30分)

本文介绍了一个自动招生系统的实现,该系统能处理大量申请者的信息,根据国家入学考试成绩和面试成绩进行排名,并按照申请者的首选学校顺序进行录取,同时处理成绩相同情况下的特殊录取规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

It is said that in 2011, there are about 100 graduate schools ready to proceed over 40,000 applications in Zhejiang Province. It would help a lot if you could write a program to automate the admission procedure.

Each applicant will have to provide two grades: the national entrance exam grade G​E​​, and the interview grade G​I​​. The final grade of an applicant is (G​E​​+G​I​​)/2. The admission rules are:

  • The applicants are ranked according to their final grades, and will be admitted one by one from the top of the rank list.

  • If there is a tied final grade, the applicants will be ranked according to their national entrance exam grade G​E​​. If still tied, their ranks must be the same.

  • Each applicant may have K choices and the admission will be done according to his/her choices: if according to the rank list, it is one's turn to be admitted; and if the quota of one's most preferred shcool is not exceeded, then one will be admitted to this school, or one's other choices will be considered one by one in order. If one gets rejected by all of preferred schools, then this unfortunate applicant will be rejected.

  • If there is a tied rank, and if the corresponding applicants are applying to the same school, then that school must admit all the applicants with the same rank, even if its quota will be exceeded.

Input Specification:

Each input file contains one test case.

Each case starts with a line containing three positive integers: N (≤40,000), the total number of applicants; M (≤100), the total number of graduate schools; and K (≤5), the number of choices an applicant may have.

In the next line, separated by a space, there are M positive integers. The i-th integer is the quota of the i-th graduate school respectively.

Then N lines follow, each contains 2+K integers separated by a space. The first 2 integers are the applicant's G​E​​ and G​I​​, respectively. The next K integers represent the preferred schools. For the sake of simplicity, we assume that the schools are numbered from 0 to M−1, and the applicants are numbered from 0 to N−1.

Output Specification:

For each test case you should output the admission results for all the graduate schools. The results of each school must occupy a line, which contains the applicants' numbers that school admits. The numbers must be in increasing order and be separated by a space. There must be no extra space at the end of each line. If no applicant is admitted by a school, you must output an empty line correspondingly.

Sample Input:

11 6 3
2 1 2 2 2 3
100 100 0 1 2
60 60 2 3 5
100 90 0 3 4
90 100 1 2 0
90 90 5 1 3
80 90 1 0 2
80 80 0 1 2
80 80 0 1 2
80 70 1 3 2
70 80 1 2 3
100 100 0 2 4

Sample Output:

0 10
3
5 6 7
2 8

1 4

题意:就相当于平行志愿的意思,有个小骚操作的地方,如果出现多个人成绩相同,且学校名额只有一个时,选择全部录取这几个人,哪怕超了名额。题目简单,但是倒数第二个节点容易超时,所以选择排序时,不要struct太复杂。

#include<iostream>

#include<vector>
#include<algorithm>
#include<unordered_map>
using namespace std;
int n, m, k;
struct node
{
    int order;
    int ge;
    int gf;
};

bool cmp(node a, node b){
    return a.gf != b.gf ? a.gf > b.gf : a.ge > b.ge;
}

int main(){
 
    int m_empty[101];
    unordered_map<int, vector<int> > un_map;

    cin >> n >> m >> k;
    for(int i = 0; i < m; i++){
        scanf("%d", &m_empty[i]);
    }
    vector<node> vec(n);
    // node vec[40001];
    for(int i = 0; i < n; i++){
        vec[i].order = i;
        int ge, gi;
        scanf("%d %d", &ge, &gi);
        vec[i].ge = ge;
        vec[i].gf = (ge + gi) / 2;
        for(int j = 0; j < k; j++){
            int temp;
            scanf("%d", &temp);
            un_map[i].push_back(temp);
            // vec[i].school.push_back(temp);
        }


    }

    // sort(vec, vec + n, cmp);
    sort(vec.begin(), vec.end(), cmp);
    vector<vector<int> > out_vec;
    int a_ge[101];
    int a_gf[101];
    out_vec.resize(m);
    for(int i = 0; i < n; i++){

        for(int j = 0; j < k; j++){
            if(m_empty[un_map[vec[i].order][j]] > 0){
                --m_empty[un_map[vec[i].order][j]];
                out_vec[un_map[vec[i].order][j]].push_back(vec[i].order);
                a_ge[un_map[vec[i].order][j]] = vec[i].ge;
                a_gf[un_map[vec[i].order][j]] = vec[i].gf;
                break;
            }else if(a_ge[un_map[vec[i].order][j]] == vec[i].ge && a_gf[un_map[vec[i].order][j]] == vec[i].gf)
            {
                out_vec[un_map[vec[i].order][j]].push_back(vec[i].order);
                break;
            }        
        }  
    }

    for(int i = 0; i < m; i++){
        if(out_vec[i].size()){
            sort(out_vec[i].begin(), out_vec[i].end());
            printf("%d", out_vec[i][0]);
        }
        for(int j = 1; j < out_vec[i].size(); j++){
            
            printf(" %d", out_vec[i][j]);
        }
        
        printf("\n");
    }
    return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值