In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.
Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.
Finally print in a line Max Heap
if it is a max heap, or Min Heap
for a min heap, or Not Heap
if it is not a heap at all.
Sample Input 1:
8
98 72 86 60 65 12 23 50
Sample Output 1:
98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap
Sample Input 2:
8
8 38 25 58 52 82 70 60
Sample Output 2:
8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap
Sample Input 3:
8
10 28 15 12 34 9 8 56
Sample Output 3:
10 15 8
10 15 9
10 28 34
10 28 12 56
Not Heap
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
int n;
vector<int> binary_tree;
vector<int> gap;
vector<int> output_tree;
int flag_cout_neg, flag_cout_pos;
void out_put_tree(int start){
int z = start;
output_tree.clear();
while (z > 0)
{
output_tree.push_back(binary_tree[z]);
// cout << binary_tree[z] << "====" << z << endl;cout << binary_tree[z] << "====" << z << endl;
z = z / 2;
}
printf("%d", output_tree.back());
int min_or_max = output_tree.back();
int neg_cnt = 0, pos_cnt = 0, zero = 0;;
for(int j = output_tree.size() - 2; j >= 0; j--){
if(min_or_max - output_tree[j] > 0){
pos_cnt++;
}else if(min_or_max - output_tree[j] < 0)
{
neg_cnt++;
}else if(min_or_max - output_tree[j] == 0)
{
zero++;
}
printf(" %d", output_tree[j]);
min_or_max = output_tree[j];
}
cout << endl;
if(pos_cnt == 0 && neg_cnt != 0)
flag_cout_neg++;
if(pos_cnt != 0 && neg_cnt == 0)
flag_cout_pos++;
}
int main(){
flag_cout_neg = 0;
flag_cout_pos = 0;
int child_start, child_end, child_right_1, child_right_2, hight;
cin >> n;
binary_tree.push_back(0);
for(int i = 1; i <= n; i++){
int temp;
scanf("%d", &temp);
binary_tree.push_back(temp);
}
// for(int i = 0; i < binary_tree.size(); i ++){
// cout << binary_tree[i] << endl;
// }
hight = log(n) / log(2) + 1;
child_start = n / 2 + 1;
child_end = n;
child_right_1 = pow(2, hight - 1) - 1;
child_right_2 = pow(2, hight) - 1;
// cout << hight << endl;
// cout << child_start << endl;
// cout << child_end << endl;
// cout << child_right_1 << endl;
// cout << child_right_2 << endl;
if(child_end == child_right_2){
for(int i = child_end; i >= child_start; i--){
out_put_tree(i);
// cout << "1";
}
}else
{
for(int i = child_right_1; i >= child_start; i--){
out_put_tree(i);
// cout << "2";
}
for(int i = child_end; i > child_right_1; i--){
out_put_tree(i);
// cout << "3";
}
}
if(flag_cout_pos == child_end - child_start + 1){
cout << "Max Heap" << endl;
}else if(flag_cout_neg == child_end - child_start + 1)
{
cout << "Min Heap" << endl;
}else
{
cout << "Not Heap" << endl;
}
return 0;
}