A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. Now given a graph with several vertex sets, you are supposed to tell if each of them is a vertex cover or not.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 104), being the total numbers of vertices and the edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N−1) of the two ends of the edge.
After the graph, a positive integer K (≤ 100) is given, which is the number of queries. Then K lines of queries follow, each in the format:
Nv v[1] v[2]⋯v[Nv]
where Nv is the number of vertices in the set, and v[i]'s are the indices of the vertices.
Output Specification:
For each query, print in a line Yes
if the set is a vertex cover, or No
if not.
Sample Input:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 0
2 4
5
4 0 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2
Sample Output:
No
Yes
Yes
No
No
注:在能准确理解题意的情况下,本题题目还较简单,题意为:已给图每条边的两个顶点,至少有一个顶点包含在所给的测试集合中,如果符合要求,输出Yes,ohterwise,输出No。
#include<iostream>
#include<unordered_set>
#include<vector>
using namespace std;
int main(){
int n, m;
cin >> n >> m;
vector<int> vec_in(m * 2);
for(int i = 0; i < m; i++){
int temp_a, temp_b;
scanf("%d %d", &temp_a, &temp_b);
vec_in[2 * i] = temp_a;
vec_in[2 * i + 1] = temp_b;
}
int k;
cin >> k;
for(int i = 0; i < k ; i++){
int num;
scanf("%d", &num);
unordered_set<int> un_set;
bool flag = true;
for(int j = 0; j < num; j++){
int temp_set;
scanf("%d", &temp_set);
un_set.insert(temp_set);
}
for(int j = 0; j < m; j++){
if(un_set.find(vec_in[j * 2]) == un_set.end() && un_set.find(vec_in[j * 2 + 1]) == un_set.end()){
flag = false;
break;
}
}
if(flag){
printf("Yes\n");
}else{
printf("No\n");
}
}
return 0;
}