次小生成树 求法
求出最小生成树后,建立最优顺序生成树
枚举每条不在最小生成树上的边,找出左右端点之间的最大边(即 Kruskal 生
成顺序森林上的 lca 或用倍增),求出删去最大边加入此边后的权值(环切性质)。
或者排序后加并查集,求出每条边的替代边。
取最小。
求出最小生成树后,建立最优顺序生成树
枚举每条不在最小生成树上的边,找出左右端点之间的最大边(即 Kruskal 生
成顺序森林上的 lca 或用倍增),求出删去最大边加入此边后的权值(环切性质)。
或者排序后加并查集,求出每条边的替代边。
取最小。
时间复杂度 o(mlogn)
蒯自hyc学长ppt
poj1679判断最小生成树是否唯一
注意,此题非常坑爹,要判m=0且m的数据范围没给
code
#include <algorithm>
#include <ctime>
#include <cmath>
#include <string>
#include <memory>
#include <cstdio>
#include <climits>
#include <cstring>
#include <cstdlib>
#include <iostream>
using namespace std;
const int maxn = 1000 + 5;
const int maxm = 10000 + 5;
typedef int pint[maxn];
typedef int eint[maxm];
typedef unsigned int uint;
typedef long long int64;
typedef unsigned long long uint64;
template <class T> inline T Sqr(T x) { return x * x; }
template <class T> inline T Abs(T x) { return x > 0 ? x : -x; }
template <class T> inline T Min(T a, T b) { return a < b ? a : b; }
template <class T> inline T Max(T a, T b) { return a > b ? a : b; }
template <class T> inline void Swap(T & a, T & b) { T _; _ = a; a = b; b = _; }
template <class T> inline T Ksm(T a, T b, T m) { T _ = 1; for (; b; b >>= 1, a = a * a
% m) (b & 1) ? _ = _ * a % m : 0; return _ % m; }
struct node
{
int u, v, w;
} a[maxm];
int T, n, m, tot, ans, e;
int ufs[maxn], s[maxm], r;
int f[maxn][30 + 5], g[maxn][30 + 5];
pint edge, vp, dep; eint point, next, worth, ve;
void link(int u, int v, int w)
{
point[++e] = v; next[e] = edge[u]; edge[u] = e; worth[e] = w;
}
bool cmp(node a, node b)
{
return a.w < b.w;
}
int find(int x)
{
if (x != ufs[x]) ufs[x] = find(ufs[x]);
return ufs[x];
}
void init()
{
memset(f, 0, sizeof(f));
memset(g, 0, sizeof(g));
memset(vp, 0, sizeof(vp));
memset(ve, 0, sizeof(ve));
memset(next, 0, sizeof(next));
memset(edge, 0, sizeof(edge));
memset(worth, 0, sizeof(worth));
memset(point, 0, sizeof(point));
for (int i = 1; i <= n; ++i)
ufs[i] = i;
for (int i = 1; i <= m; ++i)
scanf("%d%d%d", &a[i].u, &a[i].v, &a[i].w);
tot = e = r = 0;
}
void kruskal()
{
int k = 1;
sort(a + 1, a + m + 1, cmp);
for (int i = 1, fx, fy; i <= n - 1; ++i)
{
while ((fx = find(a[k].u)) == (fy = find(a[k].v))) ++k;
tot += a[k].w; ve[k] = 1; s[++r] = k++;
ufs[fx] = fy;
}
ans = INT_MAX;
for (int i = 1; i <= r; ++i)
link(a[s[i]].u, a[s[i]].v, a[s[i]].w), link(a[s[i]].v, a[s[i]].u, a[s[i]].w);
}
void dfs(int u, int d)
{
vp[u] = 1, dep[u] = d;
for (int i = edge[u]; i; i = next[i])
if (!vp[point[i]])
f[point[i]][0] = u, g[point[i]][0] = worth[i], dfs(point[i], d + 1);
}
int lca(int u, int v)
{
if (dep[u] < dep[v]) Swap(u, v);
int res = 0, d = dep[u] - dep[v];
for (int i = 0; 1 << i <= d; ++i)
if ((d >> i) & 1) res = Max(res, g[u][i]), u = f[u][i];
if (u == v) return res;
for (int k = 30; k; )
{
bool chk = 1;
for (int i = k; i >= 0; --i)
if (f[u][i] && f[u][i] != f[v][i])
{
res = Max(res, Max(g[u][i], g[v][i]));
u = f[u][i], v = f[v][i], chk = 0, k = i;
break;
}
if (chk) break;
}
return Max(res, Max(f[u][0], f[v][0]));
}
void work()
{
dfs(a[s[1]].u, 0);
for (int j = 1; j <= 30; ++j)
for (int i = 1; i <= n; ++i)
f[i][j] = f[f[i][j - 1]][j - 1], g[i][j] = Max(g[i][j - 1], g[f[i][j - 1]][j
- 1]);
for (int i = 1; i <= m; ++i)
if (!ve[i])
{
int ww, w;
ww = lca(a[i].u, a[i].v), w = tot - ww + a[i].w;
if (w < ans && w >= tot) ans = w;
if (ans == tot) break;
}
if (ans == tot) printf("Not Unique!");
else printf("%d", tot);
}
int main()
{
for (scanf("%d", &T); T; --T)
{
scanf("%d%d", &n, &m);
if (m == 0)
{
printf("0");
if (T != 1) puts("");
continue;
}
init(), kruskal(), work();
if (T != 1) puts("");
}
return 0;
}