深度学习笔记

1深度学习介绍

1.1深度学习与机器学习的区别

在这里插入图片描述
1.1.1特征提取方面
机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识
深度学习通常由多个层组成,它们通常将更简单的模型组合在一起,将数据从一层传递到另一层来构建更复杂的模型。通过训练大量数据自动得出模型,不需要人工特征提取环节。
深度学习算法试图从数据中学习高级功能,这是深度学习的一个非常独特的部分。因此,减少了为每个问题开发新特征提取器的任务。

适合用在难提取特征的图像、语音、自然语言处理领域。

1.1.2 数据量和计算性能要求
机器学习需要的执行时间远少于深度学习,深度学习参数往往很庞大,需要通过大量数据的多次优化来训练参数。

第一、深度学习需要大量的训练数据集

第二、训练深度神经网络需要大量的算力

可能要花费数天、甚至数周的时间,才能使用数百万张图像的数据集训练出一个深度网络。所以深度学习通常

需要强大的GPU服务器来进行计算
全面管理的分布式训练与预测服务――比如谷歌TensorFlow云机器学习平台
1.1.3 算法代表
机器学习
朴素贝叶斯
决策树等
深度学习
神经网络

Tensorflow结构分析

TensorFlow程序通常被组织成一个构建图阶段和一个执行图阶段。

在构建阶段,数据与操作的执行步骤被描述成一个图。

在执行阶段,使用会话执行构建好的图中的操作。

图和会话︰
图:这是TensorFlow将计算表示为指令之间的依赖关系的一种表示法。
会话: TensorFlow跨一个或多个本地或远程设备运行数据流图的机制
张量:TensorFlow中的基本数据对象
节点:提供图当中执行的操作

import tensorflow.compat.v1 as tf                  #2.0版本不兼容
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
tf.compat.v1.disable_eager_execution()             #2.0版本不兼容

def tensorflow_demo():
    """
    TensorFlow的基本结构
    :return:
    """
    # 原生python加法运算
    a = 2
    b = 3
    c = a + b
    print("普通加法运算的结果:\n", c)

    # TensorFlow实现加法运算,构建阶段,数据和操作的执行步骤被描述成一个图
    a_t = tf.constant(2)
    b_t = tf.constant(3)
    c_t = a_t + b_t
    print("TensorFlow加法运算的结果:\n", c_t)

    # 开启会话,在执行阶段&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天都要学习呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值