2024102001

from keras import Input
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dropout
from keras.models import Model
from keras.layers import concatenate
from keras.optimizers import Adam
from keras.layers import Conv2DTranspose
from keras.layers import (Conv2D, MaxPooling2D, Dropout, concatenate,
                          Conv2DTranspose, BatchNormalization, Activation)
import os
import numpy as np
import tensorflow as tf
from keras import Input
from keras.layers import Conv2D, MaxPooling2D, Dropout, concatenate, Conv2DTranspose
from keras.models import Model
from keras.optimizers import Adam


def enhancednet(pretrained_weights=None):
    input_shape = (None, None, 1)
    inputs = Input(shape=input_shape, name='input_img')
    conv1 = Conv2D(16, 5, activation='relu', padding='same')(inputs)
    conv1 = BatchNormalization()(conv1)
    conv1 = Activation('relu')(conv1)
    drop1 = Dropout(0.3)(conv1)

    pool1 = MaxPooling2D(pool_size=(2, 2))(drop1)

    conv2 = Conv2D(24, 5, activation='relu', padding='same')(pool1)
    conv2 = BatchNormalization()(conv2)
    conv2 = Activation('relu')(conv2)
    drop2 = Dropout(0.3)(conv2)

    pool2 = MaxPooling2D(pool_size=(2, 2))(drop2)

    conv3 = Conv2D(32, 5, activation='relu', padding='same')(pool2)
    conv3 = BatchNormalization()(conv3)
    conv3 = Activation('relu')(conv3)
    drop3 = Dropout(0.3)(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(drop3)

    conv4 = Conv2D(40, 5, activation='relu', padding='same')(pool3)
    conv4 = BatchNormalization()(conv4)
    conv4 = Activation('relu')(conv4)
    drop4 = Dropout(0.3)(conv4)

    up5 = Conv2D(32, 3, activation='relu', padding='same')(
        Conv2DTranspose(32, 5, activation='relu', padding="same", strides=2)(drop4))
    merge5 = concatenate([drop3, up5], axis=3)
    conv5 = Conv2D(32, 5, activation='relu', padding='same')(merge5)
    drop5 = Dropout(0.6)(conv5)

    up6 = Conv2D(24, 3, activation='relu', padding='same')(
        Conv2DTranspose(24, 5, activation='relu', padding="same", strides=2)(drop5))
    merge6 = concatenate([drop2, up6], axis=3)
    conv6 = Conv2D(24, 5, activation='relu', padding='same')(merge6)
    drop6 = Dropout(0.6)(conv6)

    up7 = Conv2D(16, 3, activation='relu', padding='same')(
        Conv2DTranspose(16, 5, activation='relu', padding="same", strides=2)(drop6))
    merge7 = concatenate([drop1, up7], axis=3)
    conv7 = Conv2D(16, 5, activation='relu', padding='same')(merge7)
    drop7 = Dropout(0.6)(conv7)
    conv8 = Conv2D(1, 1, activation='relu')(drop7)

    model = Model(inputs=inputs, outputs=conv8)

    opt = Adam()

    model.compile(optimizer=opt, loss='mse', metrics=['accuracy'])

    if pretrained_weights:
        model.load_weights(pretrained_weights)

    return model

from dataset import generate_data
import numpy as np

import os
import tensorflow as tf
from model import enhancednet

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

print("可用的GPU设备:")
for gpu in tf.config.list_physical_devices('GPU'):
    print(f"  - {gpu}")


image_rows = 128
image_cols = 256
filename = 'detached_data.mat'
train_data, train1_data, label_data = generate_data(filename)
train_data = np.array(train_data, dtype=float)
train_data = np.reshape(train_data, (len(train_data), image_rows, image_cols, 1))
# print(train_data.shape)
train1_data = np.array(train1_data, dtype=float)
train1_data = np.reshape(train1_data, (len(train1_data), image_rows, image_cols, 1))

model = enhancednet()
model.fit(train_data, train1_data, batch_size=32, epochs=100, verbose=2, shuffle=True, validation_split=0.1)

model.save('enhanced_model.h5')

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值