## 1*3 3*1 卷积实现过程中,步长变化与3*3卷积相似,值得注意的是,padding部分需要作出相应的调整,否则输出的特征图大小无法实现整倍数变化
import torch.nn as nn
import torch
class Block(nn.Module):
expansion = 1
def __init__(self, in_channel=3, out_channel=16):
super(Block, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channel)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
kernel_size=(1, 3), stride=2, padding=(0, 1), bias=False)
self.bn2 = nn.BatchNorm2d(out_channel)
self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
kernel_size=(3, 1), stride=2, padding=(1, 0), bias=False)
self.bn3 = nn.BatchNorm2d(out_channel)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.relu(out)
return out
from torchsummary import summary
# 自己查看模型的架构
model = Block(in_channel=3, out_channel=16).cuda()
# 输出前channel在前面
summary(model, (3, 224, 224))
1*3 3*1 卷积实现
最新推荐文章于 2025-09-16 14:07:14 发布
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
PyTorch 2.5
PyTorch
Cuda
PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理
296

被折叠的 条评论
为什么被折叠?



