对连续数值进行指定方式离散化,计算分布,用cut函数

ages = [20,22,25,27,21,23,37,31,61,45,41,32]
bins = [18,25,35,60,100]
#用的是cut函数
cats = pd.cut(ages,bins)
print(pd.value_counts(cats))

### 回答1: pandas中的cut方法可以将连续数值型数据离散化为离散的数据,即将一段连续数值范围划分为若干个离散的区间,每个区间代表一个离散的值。cut方法的参数包括要离散化的数据、划分区间的方式(如等距划分、等频划分等)、划分的区间数等。cut方法返回一个Series对象,其中每个元素代表原始数据对应的离散值。离散化可以使数据更易于理解和分析,也可以减少数据的噪声和异常值的影响。 ### 回答2: Pandas中的cut方法可以将连续型的数值型数据转换成离散型数据,使得数据的处理更具有可操作性。cut方法将一组数据分成多个离散化的区间,每个区间用一个标签代表,同时也可以指定每个区间的区间宽度、区间边界以及区间标签名称等参数。 cut方法的基本使用方式是:pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False) 其中,x代表需要离散化处理的数据,bins是用来离散化的区间,right参数代表区间是否包含右端点,labels参数可以指定标签名称,retbins参数表示是否需要返回区间边界,precision参数用来表示小数点的保留位数,最后include_lowest参数表示是否需要包含最小值。 例如,以下代码: import pandas as pd import numpy as np data = np.array([0.5, 1.3, 2.7, 6.0, 7.6, 8.9, 10.1]) bins = [0, 2, 5, 8, 10] cuts = pd.cut(data, bins) print(cuts) 输出结果如下: [(0, 2], (0, 2], (2, 5], (5, 8], (5, 8], (8, 10], (8, 10]] Categories (4, interval[int64]): [(0, 2] < (2, 5] < (5, 8] < (8, 10]] 其中,cuts代表生成的离散化结果,最后一行的Categories表示生成了四个区间,区间分别是(0, 2]、(2, 5]、(5, 8]、(8, 10],裁剪结果也用这四个区间代表。可以看到,结果是一个pandas.Categorical变量,其中包含这些标签和离散化数值cut方法还可以根据数据的分布情况和需要,自定义区间宽度、边界和标签名称,更加符合实际需要。例如,以下代码: bins = [0, 2, 5, 8, 10] # 自定义区间边界 labels = ['low', 'middle', 'high', 'highest'] # 自定义标签名称 cuts = pd.cut(data, bins=bins, labels=labels) print(cuts) 最后的结果如下: [low, low, middle, high, high, highest, highest] Categories (4, object): [low < middle < high < highest] 具体来说,以上代码中的bins参数设置了离散化的区间边界;labels参数设置了标签名称,并且数据可以被离散化成low、middle、high、highest四个类别;最后得到的结果也是一个pd.Categorical变量,其中包含了四个类别的标签名称和对应的离散化数值。 总的来说,cut方法非常方便地完成了数值型数据到离散型数据的转换,有效地提升了数据的处理和分析能力。 ### 回答3: Pandas是一个强大的数据分析工具,可以处理各种类型的数据。离散化是数据预处理过程中常用的一种方式,可以将连续的数据集合划分为有限的离散数据集合,方便进行分析和处理。在Pandas中,利用cut方法可以很方便地进行数据离散化cut方法的基本语法如下: pd.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates=’raise’) 参数说明: x:待离散化的数据。 bins:指定分割点,可以是一个整数、一组分割点或者是无穷大的标量。 right:是否包括最右边的间隔。 labels:分割后的标签,可以是一组字符串或者是自定义函数。 retbins:是否返回间隔标签。 precision:十进制小数的精度。 include_lowest:是否把最小值包括在内,默认不包括。 duplicates:超出边缘范围的处理方式。raise:不允许超出范围的值出现;drop:把超出范围的值从分析中删除;等等。 使用cut方法进行数据离散化的步骤如下: 1.导入Pandas库。 2.读取数据。 3.指定分割点,使用cut方法对数据进行处理。 4.分析处理后的数据。 Pandas中cut方法可用于单个或多个连续值的区间化。cut()使用一个数组作为第一个参数,把它分割为一些称为“桶”的间隔值。例如,将1到100按照10个区间划分,每个区间为10,就可以分为[1,11),[11,21),... [91,101)。其中,左闭右开的区间可以通过设置right=False进行修改。而标签可以通过传递标签列表或数组以及等量的字符串标签生成,这可以调动于设置labels选项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值