Docker官方文档解读:5

本文介绍了如何使用Docker Stacks进行分布式应用程序部署,包括添加新服务如可视化界面和Redis,以及如何实现数据持久化。通过修改docker-compose.yml文件,将新服务加入堆栈,并在Docker Swarm中进行重新部署。同时,详细解释了放置约束和数据卷在保持数据持久性中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

堆栈(Stacks)


准备工作

 

  • 安装Docker 1.13及以上版本
  • 安装Docker Compose正如第三部分的准备工作。
  • 安装Docker Machine正如第四部分的准备工作。
  • 阅读第一部分的引导。
  • 学习怎么在第二部分创建容器。
  • 确保你已经发布friendlyhello 镜像,并推送到公共仓库。我们需要在这一部分用到这个镜像。
  • 确保你的镜像能够成为一个被部署的容器能正常工作。
  • 从第三篇文章拷贝一份docker-compose.yml
  • 确保第四部分的docker machine已经正确安装,通过docker-machine ls查看。
  • 确保docker swarm正确安装,并且运行。通过执行docker-machine ssh myvm1 "docker node ls 命令验证。
     

介绍


在第4部分中,你学习了如何设置一个swarm,这是一群运行Docker的机器,并为其部署了一个应用程序,应用才能修包含的众多容器在多台机器上运行。

在第5部分中,你将学习分布式应用程序层次结构的顶部:堆栈。 堆栈是一组相互关联的服务,它们可以共享依赖关系,并且可以进行协调和伸缩。 单个堆栈能够定义和协调整个应用程序的功能(尽管非常复杂的应用程序可能需要使用多个堆栈࿰

内容概要:本文档详细介绍了基于SABO-SVR减法平均算法(SABO)优化支持向量机回归的数据多输入单输出回归预测项目。项目旨在通过引入SABO算法优化SVR模型,提高其预测精度和计算效率,解决传统SVR在处理复杂非线性关系和高维数据时的局限性。文档涵盖了项目背景、目标与意义、挑战及解决方案、特点与创新、应用领域、效果预测图及程序设计、模型架构、代码示例、注意事项、未来改进方向等内容。项目通过优化计算效率、增强非线性建模能力、自动化优化过程等创新点,为多个领域提供了高效的回归预测解决方案。 适合人群:具备一定机器学习基础,尤其是对支持向量机回归(SVR)和优化算法感兴趣的工程师、研究人员及数据科学家。 使用场景及目标:①优化SVR模型,提高其在复杂数据集上的预测精度和计算效率;②解决多输入单输出回归问题,如金融、能源、制造业、医疗健康、环境监测等领域的大规模数据分析;③通过引入SABO算法,避免局部最优解,实现全局优化;④提供自动化优化过程,减少人工调参工作量。 其他说明:项目不仅实现了SABO-SVR模型的构建与优化,还提供了详细的代码示例和GUI设计,帮助用户更好地理解和应用该技术。此外,文档还探讨了模型的可扩展性、实时预测优化、跨平台支持等未来改进方向,确保项目在实际应用中的高效性和前瞻性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

beyondwild

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值