Purpose Of Multiple Graphs In Tensorflow

本文探讨了TensorFlow为何设计为支持多个图的编程,参考了官方文档中关于Graphs和Sessions的内容。
部署运行你感兴趣的模型镜像

why tensorflow designed to programming with multiple graphs

IDsimpledetailed
1give user more control with over namingA tf.Graph defines the namespace for tf.Operation objects: each operation in a single graph must have a unique name. TensorFlow will “uniquify” the names of operations by appending “_1”, “_2”, and so on to their names if the requested name is already taken. Using multiple explicitly created graphs gives you more control over what name is given to each operation.
2simplify the construction of large graphThe default graph stores information about every tf.Operation and tf.Tensor that was ever added to it. If your program creates a large number of unconnected subgraphs, it may be more efficient to use a different tf.Graph to build each subgraph, so that unrelated state can be garbage collected.

reference

Graphs and Sessions  |  TensorFlow
https://www.tensorflow.org/programmers_guide/graphs

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值