'binary_crossentropy' & 'categorical_crossentropy' in keras

本文探讨了Keras中binary_crossentropy和categorical_crossentropy两种损失函数的区别。binary_crossentropy适用于二元多标签分类问题,而categorical_crossentropy用于多类别互斥分类问题。深入理解这两个损失函数的底层原理有助于解决分类任务中的混淆问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In model.compile(*) of keras, I met binary_crossentropy & categorical_crossentropy. These two kinds of loss somehow made me confused.
Checking their underlying will reveal the mechanism of these two kinds of loss.

loss refer to
binary_crossentropy K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1)
categorical_crossentropy tf.nn.softmax_cross_entropy_with_logits(labels=target, logits=output)

The problem is what is binary_crossentropy and softmax_cross_entropy_with_logits in TensorFlow.

binary_crossentropy (and tf.nn.sigmoid_cross_entropy_with_logits under the hood) is for binary multi-label classification (labels are independent).
categorical_crossentropy (and tf.nn.softmax_cross

keras.backend.binary_crossentropy是一种计算二进制交叉熵损失的函数。它是通过计算真实标签和预测标签之间的交叉熵来衡量模型的训练误差。在深度学习中,二进制交叉熵通常用于二分类问题,其中每个样本只有两个可能的标签。该函数是通过调用tf.keras.backend.binary_crossentropy()来实现的。具体来说,它计算了真实标签和预测标签之间的二进制交叉熵,然后取平均值。这个函数在训练模型时经常用作损失函数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [tensorflow+keras杂话](https://blog.youkuaiyun.com/weixin_43858032/article/details/125129718)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [Keras中损失函数binary_crossentropy和categorical_crossentropy产生不同结果的分析](https://blog.youkuaiyun.com/qq_35599937/article/details/105608354)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值