混合训练(Mixed Precision Training)是一种优化深度学习模型训练过程的技术,其中梯度缩放(Gradient Scaling)是混合训练中常用的一项技术。
在深度学习中,梯度是用于更新模型参数的关键信息。然而,当使用低精度数据类型(如半精度浮点数)进行训练时,梯度的计算可能会受到数值溢出或下溢的影响,导致训练不稳定或无法收敛。
1. 梯度缩放基本概念
梯度缩放是一种通过缩放梯度值的方法来解决这个问题。具体而言,梯度缩放将梯度乘以一个缩放因子,使其适应于所使用的低精度数据类型的动态范围。缩放因子通常是一个小的常数,例如 0.5 或 0.1,可以根据实际情况进行调整。
梯度缩放的过程可以简单描述如下:
计算模型的梯度:根据训练数据和当前的模型参数,计算模型的梯度。
缩放梯度:将计算得到的梯度乘以一个缩放因子。