在 PyTorch 中,model.eval() 是用于将模型设置为评估模式的方法,而 model.fuse() 是用于量化模型中的融合操作的方法。下面是它们的详细介绍:
1. model.eval()方法介绍
当涉及到 PyTorch 中的模型评估时,model.eval() 是一个非常重要的方法。它用于将模型设置为评估模式,并对模型的一些组件进行相应的调整。
1.1 模型评估模式
在训练深度学习模型时,通常有两个模式:训练模式和评估模式。在训练模式下,模型会进行反向传播并更新权重,以便进行参数优化。而在评估模式下,模型将用于推断或验证,不进行参数更新。
1.2 影响的组件
当调用 model.eval() 方法时,会对模型中的一些组件进行调整,以确保在评估过程中具有一致的行为。以下是主要受影响的组件:
- 批标准化(Batch Normalization)层:model.eval() 会固定批标准化层的统计信息(如均值和方差)&#