JVM上篇:内存与垃圾回收篇-13-垃圾回收器

文章目录

13. 垃圾回收器

13.1. GC 分类与性能指标

13.1.1. 垃圾回收器概述

垃圾收集器没有在规范中进行过多的规定,可以由不同的厂商、不同版本的 JVM 来实现。

由于 JDK 的版本处于高速迭代过程中,因此 Java 发展至今已经衍生了众多的 GC 版本。

从不同角度分析垃圾收集器,可以将 GC 分为不同的类型。

13.1.2. 垃圾收集器分类

线程数分,可以分为串行垃圾回收器并行垃圾回收器

在这里插入图片描述

串行回收指的是在同一时间段内只允许有一个 CPU 用于执行垃圾回收操作,此时工作线程被暂停,直至垃圾收集工作结束。

  • 在诸如单 CPU 处理器或者较小的应用内存等硬件平台不是特别优越的场合,串行回收器的性能表现可以超过并行回收器和并发回收器。所以,串行回收默认被应用在客户端的 Client 模式下的 JVM 中
  • 在并发能力比较强的 CPU 上,并行回收器产生的停顿时间要短于串行回收器。

和串行回收相反,并行收集可以运用多个 CPU 同时执行垃圾回收,因此提升了应用的吞吐量,不过并行回收仍然与串行回收一样,采用独占式,使用了“Stop-the-World”机制。

按照工作模式分,可以分为并发式垃圾回收器独占式垃圾回收器

  • 并发式垃圾回收器与应用程序线程交替工作,以尽可能减少应用程序的停顿时间。
  • 独占式垃圾回收器(Stop the world)一旦运行,就停止应用程序中的所有用户线程,直到垃圾回收过程完全结束。

在这里插入图片描述

碎片处理方式分,可分为压缩式垃圾回收器非压缩式垃圾回收器

  • 压缩式垃圾回收器会在回收完成后,对存活对象进行压缩整理,消除回收后的碎片。
  • 非压缩式的垃圾回收器不进行这步操作。

工作的内存区间分,又可分为年轻代垃圾回收器老年代垃圾回收器

13.1.3. 评估 GC 的性能指标

  • 吞吐量:运行用户代码的时间占总运行时间的比例(总运行时间 = 程序的运行时间 + 内存回收的时间)
  • 垃圾收集开销:吞吐量的补数,垃圾收集所用时间与总运行时间的比例。
  • 暂停时间:执行垃圾收集时,程序的工作线程被暂停的时间。
  • 收集频率:相对于应用程序的执行,收集操作发生的频率。
  • 内存占用:Java 堆区所占的内存大小。
  • 快速:一个对象从诞生到被回收所经历的时间。

吞吐量、暂停时间、内存占用 这三者共同构成一个“不可能三角”。三者总体的表现会随着技术进步而越来越好。一款优秀的收集器通常最多同时满足其中的两项。

这三项里,暂停时间的重要性日益凸显。因为随着硬件发展,内存占用多些越来越能容忍,硬件性能的提升也有助于降低收集器运行时对应用程序的影响,即提高了吞吐量。而内存的扩大,对延迟反而带来负面效果。

简单来说,主要抓住两点:吞吐量、暂停时间

吞吐量

吞吐量就是 CPU 用于运行用户代码的时间与 CPU 总消耗时间的比值,即吞吐量 = 运行用户代码时间 /(运行用户代码时间+垃圾收集时间)。比如:虚拟机总共运行了 100 分钟,其中垃圾收集花掉 1 分钟,那吞吐量就是 99%。

这种情况下,应用程序能容忍较高的暂停时间,因此,高吞吐量的应用程序有更长的时间基准,快速响应是不必考虑的

吞吐量优先,意味着在单位时间内,STW 的时间最短:0.2 + 0.2 = 0.4

在这里插入图片描述

暂停时间

“暂停时间”是指一个时间段内应用程序线程暂停,让 GC 线程执行的状态。

例如,GC 期间 100 毫秒的暂停时间意味着在这 100 毫秒期间内没有应用程序线程是活动的。

暂停时间优先,意味着尽可能让单次 STW 的时间最短:0.1 + 0.1 + 0.1 + 0.1 + 0.1 = 0.5

在这里插入图片描述

吞吐量 vs 暂停时间

高吞吐量较好因为这会让应用程序的最终用户感觉只有应用程序线程在做“生产性”工作。直觉上,吞吐量越高程序运行越快。

低暂停时间(低延迟)较好因为从最终用户的角度来看不管是 GC 还是其他原因导致一个应用被挂起始终是不好的。这取决于应用程序的类型,有时候甚至短暂的 200 毫秒暂停都可能打断终端用户体验。因此,具有低的较大暂停时间是非常重要的,特别是对于一个交互式应用程序

不幸的是”高吞吐量”和”低暂停时间”是一对相互竞争的目标(矛盾)。

  • 因为如果选择以吞吐量优先,那么必然需要降低内存回收的执行频率,但是这样会导致 GC 需要更长的暂停时间来执行内存回收。
  • 相反的,如果选择以低延迟优先为原则,那么为了降低每次执行内存回收时的暂停时间,也只能频繁地执行内存回收,但这又引起了年轻代内存的缩减和导致程序吞吐量的下降。

在设计(或使用)GC 算法时,我们必须确定我们的目标:一个 GC 算法只可能针对两个目标之一(即只专注于较大吞吐量或最小暂停时间),或尝试找到一个二者的折衷。

现在标准:在最大吞吐量优先的情况下,降低停顿时间

13.2. 不同的垃圾回收器概述

垃圾收集机制是 Java 的招牌能力,极大地提高了开发效率。这当然也是面试的热点。

13.2.1. 垃圾回收器发展史

有了虚拟机,就一定需要收集垃圾的机制,这就是 Garbage Collection,对应的产品我们称为 Garbage Collector。

  • 1999 年随 JDK1.3.1 一起来的是串行方式的 serialGc,它是第一款 GC。ParNew 垃圾收集器是 Serial 收集器的多线程版本
  • 2002 年 2 月 26 日,Parallel GC 和 Concurrent Mark Sweep GC 跟随 JDK1.4.2 一起发布·
  • Parallel GC 在 JDK6 之后成为 HotSpot 默认 GC。
  • 2012 年,在 JDK1.7u4 版本中,G1 可用。
  • 2017 年,JDK9 中 G1 变成默认的垃圾收集器,以替代 CMS。
  • 2018 年 3 月,JDK10 中 G1 垃圾回收器的并行完整垃圾回收,实现并行性来改善最坏情况下的延迟。
  • 2018 年 9 月,JDK11 发布。引入 Epsilon 垃圾回收器,又被称为 "No-Op(无操作)“ 回收器。同时,引入 ZGC:可伸缩的低延迟垃圾回收器(Experimental)
  • 2019 年 3 月,JDK12 发布。增强 G1,自动返回未用堆内存给操作系统。同时,引入 Shenandoah GC:低停顿时间的 GC(Experimental)。·
  • 2019 年 9 月,JDK13 发布。增强 ZGC,自动返回未用堆内存给操作系统。
  • 2020 年 3 月,JDK14 发布。删除 CMS 垃圾回收器。扩展 ZGC 在 macos 和 Windows 上的应用

13.2.2. 7 种经典的垃圾收集器

  • 串行回收器:Serial、Serial Old
  • 并行回收器:ParNew、Parallel Scavenge、Parallel old
  • 并发回收器:CMS、G1

在这里插入图片描述

官方手册:https://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf

在这里插入图片描述

13.2.3. 7 款经典收集器与垃圾分代之间的关系

在这里插入图片描述

  • 新生代收集器:Serial、ParNew、Parallel Scavenge;

  • 老年代收集器:Serial Old、Parallel Old、CMS;

  • 整堆收集器:G1;

13.2.4. 垃圾收集器的组合关系

在这里插入图片描述

  1. 两个收集器间有连线,表明它们可以搭配使用:Serial/Serial Old、Serial/CMS、ParNew/Serial Old、ParNew/CMS、Parallel Scavenge/Serial Old、Parallel Scavenge/Parallel Old、G1;
  2. 其中 Serial Old 作为 CMS 出现"Concurrent Mode Failure"失败的后备预案。
  3. (红色虚线)由于维护和兼容性测试的成本,在 JDK 8 时将 Serial+CMS、ParNew+Serial Old 这两个组合声明为废弃(JEP173),并在 JDK9 中完全取消了这些组合的支持(JEP214),即:移除。
  4. (绿色虚线)JDK14 中:弃用 Parallel Scavenge 和 Serialold GC 组合(JEP366)
  5. (绿色虚框)JDK14 中:删除 CMS 垃圾回收器(JEP363)

13.2.5. 不同的垃圾收集器概述

为什么要有很多收集器,一个不够吗?因为 Java 的使用场景很多,移动端,服务器等。所以就需要针对不同的场景,提供不同的垃圾收集器,提高垃圾收集的性能。

虽然我们会对各个收集器进行比较,但并非为了挑选一个最好的收集器出来。没有一种放之四海皆准、任何场景下都适用的完美收集器存在,更加没有万能的收集器。所以我们选择的只是对具体应用最合适的收集器

13.2.6. 如何查看默认垃圾收集器

-XX:+PrintCommandLineFlags:查看命令行相关参数(包含使用的垃圾收集器)

使用命令行指令:jinfo -flag 相关垃圾回收器参数 进程ID

13.3. Serial 回收器:串行回收

Serial 收集器是最基本、历史最悠久的垃圾收集器了。JDK1.3 之前回收新生代唯一的选择。

Serial 收集器作为 HotSpot 中 client 模式下的默认新生代垃圾收集器。

Serial 收集器采用复制算法、串行回收和"stop-the-World"机制的方式执行内存回收。

除了年轻代之外,Serial 收集器还提供用于执行老年代垃圾收集的 Serial Old 收集器。Serial Old 收集器同样也采用了串行回收和"Stop the World"机制,只不过内存回收算法使用的是标记-压缩算法。

  • Serial old 是运行在 Client 模式下默认的老年代的垃圾回收器
  • Serial 0ld 在 Server 模式下主要有两个用途:① 与新生代的 Parallel scavenge 配合使用 ② 作为老年代 CMS 收集器的后备垃圾收集方案

在这里插入图片描述

这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个 CPU 或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束(Stop The World)

优势:简单而高效(与其他收集器的单线程比),对于限定单个 CPU 的环境来说,Serial 收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。运行在 Client 模式下的虚拟机是个不错的选择。

在用户的桌面应用场景中,可用内存一般不大(几十 MB 至一两百 MB),可以在较短时间内完成垃圾收集(几十 ms 至一百多 ms),只要不频繁发生,使用串行回收器是可以接受的。

在 HotSpot 虚拟机中,使用-XX:+UseSerialGC参数可以指定年轻代和老年代都使用串行收集器。等价于新生代用 Serial GC,且老年代用 Serial Old GC

总结

这种垃圾收集器大家了解,现在已经不用串行的了。而且在限定单核 cpu 才可以用。现在都不是单核的了。

对于交互较强的应用而言,这种垃圾收集器是不能接受的。一般在 Java web 应用程序中是不会采用串行垃圾收集器的。

13.4. ParNew 回收器:并行回收

如果说 Serial GC 是年轻代中的单线程垃圾收集器,那么 ParNew 收集器则是 Serial 收集器的多线程版本。Par 是 Parallel 的缩写,New:只能处理的是新生代

ParNew 收集器除了采用并行回收的方式执行内存回收外,两款垃圾收集器之间几乎没有任何区别。ParNew 收集器在年轻代中同样也是采用复制算法、"Stop-the-World"机制

ParNew 是很多 JVM 运行在 Server 模式下新生代的默认垃圾收集器。

在这里插入图片描述

  • 对于新生代,回收次数频繁,使用并行方式高效。
  • 对于老年代,回收次数少,使用串行方式节省资源。(CPU 并行需要切换线程,串行可以省去切换线程的资源)

由于 ParNew 收集器是基于并行回收,那么是否可以断定 ParNew 收集器的回收效率在任何场景下都会比 serial 收集器更高效?

  • ParNew 收集器运行在多 CPU 的环境下,由于可以充分利用多 CPU、多核心等物理硬件资源优势,可以更快速地完成垃圾收集,提升程序的吞吐量。
  • 但是在单个 CPU 的环境下,ParNew 收集器不比 Serial 收集器更高效。虽然 Serial 收集器是基于串行回收,但是由于 CPU 不需要频繁地做任务切换,因此可以有效避免多线程交互过程中产生的一些额外开销。

因为除 Serial 外,目前只有 ParNew GC 能与 CMS 收集器配合工作

在程序中,开发人员可以通过选项"-XX:+UseParNewGC"手动指定使用 ParNew 收集器执行内存回收任务。它表示年轻代使用并行收集器,不影响老年代。

-XX:ParallelGCThreads限制线程数量,默认开启和 CPU 数据相同的线程数。

13.5. Parallel 回收器:吞吐量优先

HotSpot 的年轻代中除了拥有 ParNew 收集器是基于并行回收的以外,Parallel Scavenge 收集器同样也采用了复制算法、并行回收和"Stop the World"机制

那么 Parallel 收集器的出现是否多此一举?

  • 和 ParNew 收集器不同,ParallelScavenge 收集器的目标则是达到一个可控制的吞吐量(Throughput),它也被称为吞吐量优先的垃圾收集器。
  • 自适应调节策略也是 Parallel Scavenge 与 ParNew 一个重要区别。

高吞吐量则可以高效率地利用 CPU 时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。因此,常见在服务器环境中使用。例如,那些执行批量处理、订单处理、工资支付、科学计算的应用程序

Parallel 收集器在 JDK1.6 时提供了用于执行老年代垃圾收集的 Parallel Old 收集器,用来代替老年代的 Serial Old 收集器。

Parallel Old 收集器采用了标记-压缩算法,但同样也是基于并行回收和"Stop-the-World"机制

在这里插入图片描述

在程序吞吐量优先的应用场景中,Parallel 收集器和 Parallel Old 收集器的组合,在 Server 模式下的内存回收性能很不错。在 Java8 中,默认是此垃圾收集器。

参数配置

  • -XX:+UseParallelGC 手动指定年轻代使用 Parallel 并行收集器执行内存回收任务。

  • -XX:+UseParallelOldGC 手动指定老年代都是使用并行回收收集器。

    • 分别适用于新生代和老年代。默认 jdk8 是开启的。
    • 上面两个参数,默认开启一个,另一个也会被开启。(互相激活)
  • -XX:ParallelGCThreads 设置年轻代并行收集器的线程数。一般地,最好与 CPU 数量相等,以避免过多的线程数影响垃圾收集性能。

    KaTeX parse error: Undefined control sequence: \* at position 81: …= 8) \\ 3 + (5 \̲*̲ CPU_Count / 8)…

  • -XX:MaxGCPauseMillis 设置垃圾收集器最大停顿时间(即 STw 的时间)。单位是毫秒。

    • 为了尽可能地把停顿时间控制在 MaxGCPauseMills 以内,收集器在工作时会调整 Java 堆大小或者其他一些参数。
    • 对于用户来讲,停顿时间越短体验越好。但是在服务器端,我们注重高并发,整体的吞吐量。所以服务器端适合 Parallel,进行控制。
    • 该参数使用需谨慎
  • -XX:GCTimeRatio 垃圾收集时间占总时间的比例(=1/(N+1))。用于衡量吞吐量的大小。

    • 取值范围(0, 100)。默认值 99,也就是垃圾回收时间不超过 1%。
    • 与前一个-XX:MaxGCPauseMillis 参数有一定矛盾性。暂停时间越长,Radio 参数就容易超过设定的比例。
  • -XX:+UseAdaptivesizePolicy 设置 Parallel Scavenge 收集器具有自适应调节策略

    • 在这种模式下,年轻代的大小、Eden 和 Survivor 的比例、晋升老年代的对象年龄等参数会被自动调整,已达到在堆大小、吞吐量和停顿时间之间的平衡点。
    • 在手动调优比较困难的场合,可以直接使用这种自适应的方式,仅指定虚拟机的最大堆、目标的吞吐量(GCTimeRatio)和停顿时间(MaxGCPauseMills),让虚拟机自己完成调优工作。

13.6. CMS 回收器:低延迟

在 JDK1.5 时期,Hotspot 推出了一款在强交互应用中几乎可认为有划时代意义的垃圾收集器:CMS(Concurrent-Mark-Sweep)收集器,这款收集器是 HotSpot 虚拟机中第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程同时工作

CMS 收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间。停顿时间越短(低延迟)就越适合与用户交互的程序,良好的响应速度能提升用户体验。

  • 目前很大一部分的 Java 应用集中在互联网站或者 B/S 系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS 收集器就非常符合这类应用的需求。

CMS 的垃圾收集算法采用标记-清除算法,并且也会"Stop-the-World"

不幸的是,CMS 作为老年代的收集器,却无法与 JDK1.4.0 中已经存在的新生代收集器 Parallel Scavenge 配合工作,所以在 JDK1.5 中使用 CMS 来收集老年代的时候,新生代只能选择 ParNew 或者 Serial 收集器中的一个。

在 G1 出现之前,CMS 使用还是非常广泛的。一直到今天,仍然有很多系统使用 CMS GC。

在这里插入图片描述

CMS 整个过程比之前的收集器要复杂,整个过程分为 4 个主要阶段,即初始标记阶段、并发标记阶段、重新标记阶段和并发清除阶段

  • 初始标记(Initial-Mark)阶段:在这个阶段中,程序中所有的工作线程都将会因为“Stop-the-World”机制而出现短暂的暂停,这个阶段的主要任务仅仅只是标记出 GCRoots 能直接关联到的对象。一旦标记完成之后就会恢复之前被暂停的所有应用线程。由于直接关联对象比较小,所以这里的速度非常快
  • 并发标记(Concurrent-Mark)阶段:从 GC Roots 的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行。
  • 重新标记(Remark)阶段:由于在并发标记阶段中,程序的工作线程会和垃圾收集线程同时运行或者交叉运行,因此为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短。
  • 并发清除(Concurrent-Sweep)阶段:此阶段清理删除掉标记阶段判断的已经死亡的对象,释放内存空间。由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的

尽管 CMS 收集器采用的是并发回收(非独占式),但是在其初始化标记和再次标记这两个阶段中仍然需要执行“Stop-the-World”机制暂停程序中的工作线程,不过暂停时间并不会太长,因此可以说明目前所有的垃圾收集器都做不到完全

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@程序员小袁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值