Problem:
Given a positive integer N, you should output the most right digit of N^N.
Input:
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output:
For each test case, you should output the rightmost digit of N^N.
Input Example:
2
3
4
Output Example:
7
6
Hint:
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7.
In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
本题考取算法为:快速幂取模
Code:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
while (n-- > 0) {
int x = sc.nextInt();
System.out.println(f(x, x, 10));
}
sc.close();
}
static int f(int a, int b, int c) {
int ans = 1;
a = a % c;
while (b > 0) {
if (b % 2 == 1) {
ans = (ans * a) % c;
}
b = b / 2;
a = (a * a) % c;
}
return ans;
}
}