poj2195 spfa 最小费用最大流

本文探讨了一个关于网格地图上人与房屋匹配的问题,即如何以最低成本将所有人分配到不同的房屋中。通过构建图模型并应用SPFA算法与最大流最小费用流算法,求解最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Going Home
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 20302 Accepted: 10296

Description

On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man. 

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point. 

You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Output

2
10

28

题意 : m表示人,H表示房子,每个人都进入房子,一个人只能进入一个房子,问所有人都进入房子需要的路程总和最小费用是多少,走一格,表示一个单位路程

#include <stdio.h>
#include <string.h>
#include <cmath>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <queue>
using std::queue;
#include <vector>
const int inf=0x3f3f3f3f;
const int maxn=1e4;
const int maxm=1e5;

using namespace std;
struct edge
{
    int to,cap,cost,flow,next;
}edge[maxm];
int head[maxn],tol;
int pre[maxn],dis[maxn];
bool vis[maxn];
int N;
void init(int n)
{
    N=n;
    tol=0;
    memset(head,-1,sizeof(head));
}
void add_edge(int u,int v,int cap,int cost)
{
    edge[tol].to=v;
    edge[tol].cap=cap;
    edge[tol].cost=cost;
    edge[tol].flow=0;
    edge[tol].next=head[u];
    head[u]=tol++;
    edge[tol].to=u;
    edge[tol].cap=0;
    edge[tol].cost=-cost;
    edge[tol].flow=0;
    edge[tol].next=head[v];
    head[v]=tol++;
}
bool spfa(int s,int t)
{
    queue<int>q;
    for(int i=0;i<N;i++)
    {
        dis[N]=inf;
        vis[i]=false;
        pre[i]=-1;
    }
    dis[s]=0;
    vis[s]=true;
    q.push(s);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        vis[u]=false;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(edge[i].cap>edge[i].flow&&dis[v]>dis[u]+edge[i].cost)
            {
                dis[v]=dis[u]+edge[i].cost;
                pre[v]=i;
                if(!vis[v])
                {
                    vis[v]=true;
                    q.push(v);
                }
            }
        }
    }
    if(pre[t]==-1)
        return false;
    else
        return true;
}
int mincostmaxflow(int s,int t,int &cost)
{
    int flow=0;
    cost=0;
    while(spfa(s,t))
    {
        int Min=inf;
        for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
        {
            if(Min>edge[i].cap-edge[i].flow)
                Min=edge[i].cap-edge[i].flow;
        }
        for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
        {
            edge[i].flow+=Min;
            edge[i^1].flow-=Min;
            cost+=edge[i].cost*Min;
        }
        flow+=Min;
    }
    return flow;
}

struct ac
{
    int x, y;
} dh[10050],dm[10050];
int f(ac a,ac b)
{
    return abs(a.x-b.x)+abs(a.y-b.y);
}
char str[105][105];
int main()
{
    int n,m;
    int M,H;
    while(scanf("%d%d",&n,&m)!=-1)
    {

        H=0,M=0;
        for(int i=0; i<n; i++)
        {
            scanf("%s",str[i]);
            for(int j=0; j<m; j++)
            {
                if(str[i][j]=='H')
                {
                    dh[H].x=i;
                    dh[H].y=j;
                    H++;
                  //  cout<<99<<endl;
                }
                if(str[i][j]=='m')
                {
                    dm[M].x=i;
                    dm[M].y=j;
                    M++;
                }
            }
        }
        init(M+H+2);
        for(int i=0;i<H;i++)
        {
            for(int j=0;j<M;j++)
            {
                add_edge(i+1,j+H+1,1,f(dh[i],dm[j]));
                //cout<<f(dh[i],dm[j])<<endl;
            }
        }
        for(int i=0;i<H;i++)
            add_edge(0,i+1,1,0);
        for(int i=0;i<M;i++)
            add_edge(i+H+1,H+M+1,1,0);
        int ans;
        int flow=mincostmaxflow(0,H+M+1,ans);
        cout<<ans<<endl;

    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值