介绍:
“流”的问题可能不仅仅是流量,还包括“费用”的因素。网络的每一条边(Vi,Vj)除给定了容量Cij外,还给了一个单位流量费用Bij>=0。问题的数学模型是求最大流F,使流的总输送费用B(F)=∑Bij Fij (I,j∈A)取极小值。这就是所谓的最小费用最大流问题。
下图所示是一个公路网,s是仓库所在地,t是物资终点。每一条边都有两个数字,第一个数字表示某段时间通过公路的物资的最多吨数,第二个数字表示每顿物资通过该公路的费用。问怎样安排才能即使得从s运到t的物资最多,又使得总的运输费用最少?
算法思想:
从F=0开始,设已知F是流量V(F)的最小费用流,余下的问题是如何去寻求关于F的最小费用可增广路径。
构造一个加权有向图W(F),它的节点是原网络D的节点,把D中的每一条边(Vi,Vj)变成两个方向相反的边<Vi,Vj>和<Vj,Vi>。定义W(F)中的边权Wij为
于是在网络中寻求关于F的最小费用可增广路径,等价于在加权有向图W(F)中寻求从Vs到Vt的最短路径。