汉诺塔VII
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1033 Accepted Submission(s): 688
Problem Description
n个盘子的汉诺塔问题的最少移动次数是2^n-1,即在移动过程中会产生2^n个系列。由于发生错移产生的系列就增加了,这种错误是放错了柱子,并不会把大盘放到小盘上,即各柱子从下往上的大小仍保持如下关系 :
n=m+p+q
a1>a2>...>am
b1>b2>...>bp
c1>c2>...>cq
ai是A柱上的盘的盘号系列,bi是B柱上的盘的盘号系列, ci是C柱上的盘的盘号系列,最初目标是将A柱上的n个盘子移到C盘. 给出1个系列,判断它是否是在正确的移动中产生的系列.
例1:n=3
3
2
1
是正确的
例2:n=3
3
1
2
是不正确的。
注:对于例2如果目标是将A柱上的n个盘子移到B盘. 则是正确的.
n=m+p+q
a1>a2>...>am
b1>b2>...>bp
c1>c2>...>cq
ai是A柱上的盘的盘号系列,bi是B柱上的盘的盘号系列, ci是C柱上的盘的盘号系列,最初目标是将A柱上的n个盘子移到C盘. 给出1个系列,判断它是否是在正确的移动中产生的系列.
例1:n=3
3
2
1
是正确的
例2:n=3
3
1
2
是不正确的。
注:对于例2如果目标是将A柱上的n个盘子移到B盘. 则是正确的.
Input
包含多组数据,首先输入T,表示有T组数据.每组数据4行,第1行N是盘子的数目N<=64.
后3行如下
m a1 a2 ...am
p b1 b2 ...bp
q c1 c2 ...cq
N=m+p+q,0<=m<=N,0<=p<=N,0<=q<=N,
后3行如下
m a1 a2 ...am
p b1 b2 ...bp
q c1 c2 ...cq
N=m+p+q,0<=m<=N,0<=p<=N,0<=q<=N,
Output
对于每组数据,判断它是否是在正确的移动中产生的系列.正确输出true,否则false
Sample Input
6 3 1 3 1 2 1 1 3 1 3 1 1 1 2 6 3 6 5 4 1 1 2 3 2 6 3 6 5 4 2 3 2 1 1 3 1 3 1 2 1 1 20 2 20 17 2 19 18 16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Sample Output
true false false false true true
Author
Zhousc@ECJTU
Source
Recommend
对一个含有n个盘子,从A柱移动到C柱借助B柱的汉诺塔,第n个盘子移动到C柱过程是这样子的:首先将其余的n-1个盘子移动到B柱,然后第n个盘子直接移动到C柱。在这过程中,第n个盘子只出现在A柱和C柱两个柱子上,也即第n个盘子不可能出现在B柱上。因此对于当前移动的盘子,只需检查其所在的柱子是否符合这个要求,如果出现在B柱上,则显然进入了错误移动中。这是本题求解思想精髓所在。汉诺塔是个递归求解过程,假设第n个盘子符合要求,则判别的下一个目标是第n-1个盘子。若第n个盘子在A柱上,此时剩余n-1个盘子必由A柱移动到B柱,经由C柱。此时对第n-1个盘子,C柱就是其不可能出现的位置;若第n个盘子在C住上,这剩余n-1个盘子则是在B柱上,经由A柱,移动到C柱上,因此,A柱就是第n-1个盘子不可能出现的位置。
根据汉诺塔递归求解的过程,对每个移动的盘子,可以用递归求解的方式判断。
ac代码
#include<stdio.h>
int a[61],b[61],c[61];
int jud(int n,int *a,int *c,int *b)
{
if(b[0]==n)
return 0;
if(a[0]==n)
return jud(n-1,a+1,b,c);
if(c[0]==n)
return jud(n-1,b,c+1,a);
return 1;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m,p,q,i;
scanf("%d",&n);
scanf("%d",&m);
for(i=0;i<m;i++)
{
scanf("%d",&a[i]);
}
scanf("%d",&p);
for(i=0;i<p;i++)
scanf("%d",&b[i]);
scanf("%d",&q);
for(i=0;i<q;i++)
scanf("%d",&c[i]);
a[m]=b[p]=c[q]=-1;
if(jud(n,a,c,b))
{
printf("true\n");
}
else
printf("false\n");
}
}