因为在windows环境下想pytorch和tensorboard联合使用,所以搜到了这个Tensorflow和Pytorch同时安装的博文,验证并转载过来。
目录
前言
Tensorflow和pytorch是两个不同模块,导入import时对python的版本和编译环境有要求,要想同时使用Tensorflow和pytorch,需将其安装在同一个环境下。本文在此分享一些经验技巧以及罗列一些雷区给大家。
一、Tensorflow的版本兼容性
参考链接: tensorflow官网。
版本兼容问题不是固定的,例如以前tensorflow2和python3.7不兼容,出现模块导入不成功,运行不稳定之类的问题,但之后却发现tensorflow2优化过了,tensorflow2.3与python3.8可以兼容,不出现性能问题(如下图)。所以不兼容就换一个版本试试,或者参考一些已被验证过的python版本(也可以网上搜索一下兼容的版本)。tensorflow和CUDA及CUDNN也有一定对应关系,参考一些已被验证过的CUDA版本。
二、Pytorch的版本兼容性
参考链接: pytorch官网。
打开pytorch官网,如下图页面,选择操作系统如linux或windows、安装包、兼容的python版本。如果你电脑显卡配置不错,希望用GPU来跑代码,就要选择CUDA的版本类型(选择None默认CPU),怎么选要先 查一下电脑CUDA的版本,查不到则要安装CUDA。最下面是官网根据以上所选生成的用于安装的语句。
三、Tensorflow安装流程
1.创建虚拟环境
基操先打开Anaconda Prompt。
创建一个名为“TF2.3”的虚拟环境(环境名可自定义),用于支持tensorflow以及pytorch等的安装和运行,“python=3.8”指该环境对应的python解释器为3.8,当然也可以自定义为其他python版本,不兼容则回顾上文。
conda create -n TF2.3 python=3.8
创建完成后,可以用以下语