Take the number 192 and multiply it by each of 1, 2, and 3:
192 × 1 = 192
192 × 2 = 384
192 × 3 = 576
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n > 1?
#include <iostream>
#include <string>
#include <map>
using namespace std;
bool pan_mul(int a, int b,int &c)
{
c = 0;
map<int, int>mp;
for (int i = 1; i <= b; i++)
{
int tmp = a*i;
int num = tmp;
int count = 0;
while (tmp)
{
if (mp[tmp % 10] != 0)
return false;
mp[tmp % 10]++;
tmp /= 10;
count++;
}
if (mp[0] != 0)
return false;
if (i == 1)
c += num;
else
c = c*pow(10, count) + num;
}
if (mp[0] != 0)
return false;
if (mp.size() == 10)
return true;
else
return false;
}
int main()
{
int maxn = 0;
for (int i = 1; i <= 10000; i++)
{
for (int j = 2; j <= 15; j++)
{
int c = 0;
if (pan_mul(i, j, c))
{
if (c > maxn)
{
//cout << i << " " << j << " " << c << endl;
maxn = c;
}
}
}
}
cout << maxn << endl;
system("pause");
return 0;
}