Project Euler:Problem 37 Truncatable primes

本文探讨了一个有趣的数学问题:找到所有同时可以从左到右和从右到左截断数字序列仍然保持质数属性的唯一十一组质数,并计算它们的总和。

The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.

Find the sum of the only eleven primes that are both truncatable from left to right and right to left.

NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.



#include <iostream>
#include <string>
using namespace std;

bool prim(int a)
{
	if (a == 1)
		return false;
	for (int i = 2; i*i <= a; i++)
	{
		if (a%i == 0)
			return false;
	}
	return true;
}

bool tr_prim(int a)
{
	int num = a;
	int count = 0;
	int tmp[10] = { 0 };
	while (a)
	{
		if (!prim(a))
			return false;
		count++;
		tmp[count] = a % 10;
		a /= 10;
	}
	for (int i = count; i > 1; i--)
	{
		num = num - tmp[i] * pow(10, i - 1);
		if (!prim(num))
			return false;
	}
	return true;
}


int main()
{
	
	int sum = 0;
	for (int i = 10; i <= 1000000; i++)
	{
		if (tr_prim(i))
		{
			//cout << i << endl;
			sum += i;
		}
	}
	cout << sum << endl;
	system("pause");
	return 0;


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值