YOLO回归函数代码对应讲解

YOLO目标检测详解
本文详细解析了YOLO目标检测算法的工作原理,包括其回归函数的具体实现方式,并探讨了网络训练过程中涉及的关键变量与参数调整策略。此外,还讨论了YOLO在处理重叠目标时的局限性。
部署运行你感兴趣的模型镜像

    关于YOLO的理论知识个人转载的一篇博客有具体讲解:点击打开链接,本文主要对YOLO的回归函数与代码对应起来讲解,便于更加深入的理解YOLO的实现过程。

if(state.train){
        float avg_iou = 0;
        float avg_cat = 0;
        float avg_allcat = 0;
        float avg_obj = 0;
        float avg_anyobj = 0;
        int count = 0;
        *(l.cost) = 0;
        int size = l.inputs * l.batch;
        memset(l.delta, 0, size * sizeof(float));
        for (b = 0; b < l.batch; ++b){
            int index = b*l.inputs;
            for (i = 0; i < locations; ++i) {
                int truth_index = (b*locations + i)*(1+l.coords+l.classes);
                int is_obj = state.truth[truth_index];//表示这个cell是否是object,数据存放在state里面
                for (j = 0; j < l.n; ++j) {
                    int p_index = index + locations*l.classes + i*l.n + j;
                    l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]);//没有目标物体项
                    *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2);
                    avg_anyobj += l.output[p_index];
                }

                int best_index = -1;
                float best_iou = 0;
                float best_rmse = 20;

                if (!is_obj){
                    continue;
                }

		//类别项
                int class_index = index + i*l.classes;
                for(j = 0; j < l.classes; ++j) {
                    l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]);
                    *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
                    if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
                    avg_allcat += l.output[class_index+j];
                }

                box truth = float_to_box(state.truth + truth_index + 1 + l.classes);
                truth.x /= l.side;
                truth.y /= l.side;

                for(j = 0; j < l.n; ++j){
                    int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords;
                    box out = float_to_box(l.output + box_index);
                    out.x /= l.side;
                    out.y /= l.side;

                    if (l.sqrt){
                        out.w = out.w*out.w;
                        out.h = out.h*out.h;
                    }

                    float iou  = box_iou(out, truth);
                    //iou = 0;
                    float rmse = box_rmse(out, truth);
                    if(best_iou > 0 || iou > 0){
                        if(iou > best_iou){
                            best_iou = iou;
                            best_index = j;
                        }
                    }else{
                        if(rmse < best_rmse){
                            best_rmse = rmse;
                            best_index = j;
                        }
                    }
                }

                if(l.forced){
                    if(truth.w*truth.h < .1){
                        best_index = 1;
                    }else{
                        best_index = 0;
                    }
                }
                if(l.random && *(state.net.seen) < 64000){
                    best_index = rand()%l.n;
                }

                int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
                int tbox_index = truth_index + 1 + l.classes;

                box out = float_to_box(l.output + box_index);
                out.x /= l.side;
                out.y /= l.side;
                if (l.sqrt) {
                    out.w = out.w*out.w;
                    out.h = out.h*out.h;
                }
                float iou  = box_iou(out, truth);

                //printf("%d,", best_index);
		//对应于论文里面的第三项
                int p_index = index + locations*l.classes + i*l.n + best_index;//这里揭开前面的问题,这里相当于已经判定是objcet,就把之前算在里面noobjcet的减掉
                *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
                *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
                avg_obj += l.output[p_index];
                l.delta[p_index] = l.object_scale * (1.-l.output[p_index]);//这里就覆盖到之前被noobject赋值的数

                if(l.rescore){
                    l.delta[p_index] = l.object_scale * (iou - l.output[p_index]);
                }

		//下面的四个对应于论文里面损失的第一项和第二项, 即坐标的回归。
                l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]);//deltax
                l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]);//deltay
                l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]);//deltaw
                l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]);//deltah
                if(l.sqrt){
                    l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]);//sqrt-deltaw;
                    l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]);//sqrt-deltah;
                }

                *(l.cost) += pow(1-iou, 2);
                avg_iou += iou;
                ++count;
            }
        }

从detect_layer.c中网络训练的代码发现,目标物体的GT维度为25,分别为类别维度(20),置信度(1),坐标(4);yolo实质上每格小格只预测一个box,因为仅选择预测到的两个box中IOU较大的作为最终的box回归。通过这种回归模式,显然对于目标物体存在重叠度较大,或者目标物体较为密集的情形下,YOLO的这种预测模式会存在较大的漏检,效果有待进一步改进。网络输出数据格式和标签的格式如下图所示:

                     

若有不当之处,请指教,谢谢!

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

YOLO(You Only Look Once)是一种单阶段目标检测模型,以其高效性和实时性著称。其核心思想是将目标检测问题转化为一个回归问题,而不是传统的两阶段方法(如R-CNN系列中的区域提议+分类)。通过这种方式,YOLO实现了端到端的训练和推理流程,大幅提升了检测速度[^1]。 ### YOLO 的整体架构 YOLO 的基本结构可以分为四个主要部分:输入处理、主干网络(Backbone)、特征金字塔(Neck)以及检测头(Head)。 #### 1. 输入处理 YOLO 接收固定大小的图像作为输入,通常为 $448 \times 448$ 像素(具体尺寸可能因版本而异)。输入图像会被归一化并送入主干网络进行特征提取。 #### 2. 主干网络(Backbone) 主干网络负责从输入图像中提取高维特征。不同版本的 YOLO 使用了不同的主干网络: - **YOLOv1**:使用了一个类似于 GoogleNet 的网络结构,包含多个卷积层和池化层。 - **YOLOv2**:引入了 DarkNet-19 结构,减少了参数量并提高了效率。 - **YOLOv3** 和 **YOLOv4**:采用了更深层次的 DarkNet-53 网络,结合残差模块提升特征表达能力[^2]。 #### 3. 特征金字塔(Neck) 为了增强多尺度目标检测能力,YOLO 引入了特征金字塔结构,用于融合不同层级的特征图: - **YOLOv2**:使用了 Passthrough 层,将浅层特征与深层特征拼接起来,以保留更多空间信息。 - **YOLOv3** 和 **YOLOv4**:引入了 Feature Pyramid Network(FPN),通过自上而下和横向连接的方式,融合多尺度特征,提高对小目标的检测性能。 #### 4. 检测头(Head) 检测头负责在每个网格单元上预测边界框(Bounding Box)、对象置信度(Objectness Score)和类别概率(Class Probabilities): - **边界框预测**:每个网格单元会预测多个边界框,通常为 3 个锚框(Anchor Boxes),由 K-means 聚类生成[^2]。 - **置信度预测**:表示该边界框是否包含目标对象。 - **类别概率预测**:对于 COCO 数据集等多类别任务,输出每个类别的概率分布。 ### YOLO 的工作原理 YOLO 将输入图像划分为一个 $S \times S$ 的网格单元,每个网格单元负责预测若干边界框及其对应的置信度和类别概率。最终通过非极大值抑制(NMS)去除冗余的预测框,得到最终的检测结果。 #### 损失函数设计 YOLO 的损失函数主要包括三部分: - **坐标回归损失(Coordinate Regression Loss)**:用于优化边界框的位置,通常使用均方误差(MSE)。 - **置信度损失(Confidence Loss)**:衡量边界框是否包含目标对象,通常使用二元交叉熵损失(BCE Loss)。 - **分类损失(Classification Loss)**:用于优化类别概率预测,也使用 BCE Loss[^2]。 例如,在 YOLOv4 中,坐标损失采用 CIoU 损失函数,进一步提升了边界框的精度。 ### 示例代码YOLOv4 检测头实现(PyTorch) ```python import torch import torch.nn as nn class YOLOv4Head(nn.Module): def __init__(self, num_classes, anchors): super(YOLOv4Head, self).__init__() self.num_classes = num_classes self.anchors = anchors self.num_anchors = len(anchors) # 每个锚框的输出维度为 (5 + num_classes):x, y, w, h, obj_conf + class_probs self.conv = nn.Conv2d(256, self.num_anchors * (5 + num_classes), kernel_size=1) def forward(self, x): x = self.conv(x) batch_size, _, height, width = x.shape # reshape 输出为 [batch_size, num_anchors, (5 + num_classes), height, width] x = x.view(batch_size, self.num_anchors, 5 + self.num_classes, height, width) return x ``` 上述代码展示了 YOLOv4 检测头的基本结构,其中 `num_classes` 表示目标类别的数量,`anchors` 是预设的锚框尺寸。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值