TensorFlow获取加载模型中的全部张量名称

本文介绍了如何使用TensorFlow加载预训练的Inception_v3模型,并获取模型中所有节点的名称。通过Python脚本实现,可以将这些节点名称打印出来或者保存到TXT文件中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 核心代码如下:

[tensor.name for tensor in tf.get_default_graph().as_graph_def().node]

实例代码:(加载了Inceptino_v3的模型,并获取该模型所有节点的名称)

# -*- coding: utf-8 -*-

import tensorflow as tf
import os

model_dir = 'C:/Inception_v3'
model_name = 'output_graph.pb'

# 读取并创建一个图graph来存放训练好的 Inception_v3模型(函数)
def create_graph():
    with tf.gfile.FastGFile(os.path.join(
            model_dir, model_name), 'rb') as f:
        # 使用tf.GraphDef()定义一个空的Graph
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        # Imports the graph from graph_def into the current default Graph.
        tf.import_graph_def(graph_def, name='')

# 创建graph
create_graph()

tensor_name_list = [tensor.name for tensor in tf.get_default_graph().as_graph_def().node]
for tensor_name in tensor_name_list:
    print(tensor_name,'\n')

输出结果:

mixed_8/tower/conv_1/batchnorm/moving_variance 

mixed_8/tower/conv_1/batchnorm 

r_1/mixed/conv_1/batchnorm 

.

.

.

mixed_10/tower_1/mixed/conv_1/CheckNumerics 

mixed_10/tower_1/mixed/conv_1/control_dependency 

mixed_10/tower_1/mixed/conv_1 

pool_3 

pool_3/_reshape/shape 

pool_3/_reshape 

input/BottleneckInputPlaceholder 
.
.
.
.
final_training_ops/weights/final_weights 

final_training_ops/weights/final_weights/read 

final_training_ops/biases/final_biases 

final_training_ops/biases/final_biases/read 

final_training_ops/Wx_plus_b/MatMul 

final_training_ops/Wx_plus_b/add 

final_result

由于结果太长了,就省略了一些。


如果不想这样print输出也可以将其写入txt 查看。

写入txt代码如下:

tensor_name_list = [tensor.name for tensor in tf.get_default_graph().as_graph_def().node]

txt_path = './txt/节点名称'
full_path = txt_path+ '.txt'

for tensor_name in tensor_name_list:
    name = tensor_name + '\n'
    file = open(full_path,'a+')
file.write(name)
file.close()

参考链接:

TensorFlow学习笔记:获取以来模型全部张量名称

Tensorflow:如何通过名称获得张量?

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值