saver = tf.train.import_meta_graph('model/my-model-290.meta')
saver.restore(sess, tf.train.latest_checkpoint("model/"))
print sess.run('w:0')
run()参数含义:
w表示图中的操作名称,0表示该操作返回的第一个Tensor.
saver = tf.train.import_meta_graph('my_test_model-1000.meta')
saver.restore(sess,tf.train.latest_checkpoint('./'))
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
//google的
Your observations on Tensor naming are absolutely correct: the name of a Tensor is the concatenation of
- the name of the operation that produced it,
- a colon (
:), and - the index of that tensor in the outputs of the operation that produced it.
本文详细介绍了如何使用TensorFlow加载保存的模型,并通过saver.restore和get_tensor_by_name方法获取模型中的参数。了解了Tensor命名规则及其组成部分,包括操作名称、冒号和张量在操作输出中的索引。
1749

被折叠的 条评论
为什么被折叠?



