周报6_YMK

本周关注了Medusa头和base_model的代码理解,重写了项目代码并研究了CosmoFlow,一个基于TensorFlow的CNN模型用于预测宇宙参数。探索了将CNN模型替换为大模型的可能性,并设想将美杜莎头概念应用于扩散模型的生成过程以提高效率。
部署运行你感兴趣的模型镜像

周报6

  • 本周主要在看代码:看Medusa头的代码发现不是很了解base_model那部分,所以又去看了llama2的代码和一些相关博客。

  • 重写了一部分佛山中医学院项目的代码,更规范一些。

  • 调研CosmoFlow,是一个深度学习预测宇宙参数的模型,旨在在现代 HPC 平台上处理大型 3D 宇宙学数据集。基于TensorFlow 框架,执行在两个 HPC 系统——Cori(美国) 和 Piz Daint(瑞士)。

他的模型很小,是简单的CNN,700 万个参数(28.15 MB )。

在这里插入图片描述

样本101,056 个,输入是[128, 128, 128]的空间张量(暗物质分布),输出是3个宇宙学参数

在这里插入图片描述

最大运行使用 Cori 的 8192 个 KNL 节点,训练 130 个epoch。平均 epoch 3.35 秒,整个运行大约需要 9 分钟。

个人觉得把CNN换成大模型是可行的。具体会存在哪些瓶颈我后面还需要去了解一下。

一些想法:

感觉扩散模型的逆扩散过程(生成)也可以用美杜莎头的思想来加快生成速度,因为扩散模型在生成过程中需要一个step一个step来去噪得到图片,所以或许也可以用几个小模型当做美杜莎头打草稿,经过几个step后用原模型校验一下,循环这个过程达到加快生成过程的目的。

一下,循环这个过程达到加快生成过程的目的。

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

现在我们有了执行计划,你分析一下哪慢:QUERY PLAN Limit (cost=9550.97..9800.70 rows=1 width=38) (actual time=9795.278..9795.400 rows=1 loops=1) -> Nested Loop (cost=9550.97..9800.70 rows=1 width=38) (actual time=9795.275..9795.396 rows=1 loops=1) Join Filter: (((pm.original_store_code)::text = (pm_1.original_store_code)::text) AND ((ym.group_number)::text = (ym_1.group_number)::text) AND ((ym.host_cycle_code)::text = (ym_1.host_cycle_code)::text) AND ((ym.store_cycle_code)::text = (ym_1.store_cycle_code)::text)) -> Group (cost=4704.81..4841.78 rows=1 width=29) (actual time=3247.129..3247.199 rows=1 loops=1) Group Key: pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code -> Gather Merge (cost=4704.81..4841.77 rows=1 width=29) (actual time=3247.128..3247.196 rows=1 loops=1) Workers Planned: 1 Workers Launched: 1 -> Incremental Sort (cost=3704.80..3841.65 rows=2 width=29) (actual time=1623.114..1623.117 rows=1 loops=2) Sort Key: pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code Presorted Key: pm.original_store_code Full-sort Groups: 1 Sort Method: quicksort Average Memory: 30kB Peak Memory: 30kB Pre-sorted Groups: 1 Sort Method: quicksort Average Memory: 45kB Peak Memory: 45kB Worker 0: Full-sort Groups: 1 Sort Method: quicksort Average Memory: 25kB Peak Memory: 25kB -> Nested Loop (cost=3568.02..3841.56 rows=1 width=29) (actual time=1622.343..1622.884 rows=131 loops=2) -> Merge Left Join (cost=3567.74..3628.53 rows=522 width=21) (actual time=1621.903..1622.179 rows=228 loops=2) Merge Cond: (((pm.original_store_code)::text = (ymk.original_store_code)::text) AND ((ym.host_cycle_code)::text = (ymk.host_cycle_code)::text) AND ((ym.store_cycle_code)::text = (ymk.store_cycle_code)::text) AND ((ym.information_category_code)::text = (ymk.information_category_code)::text)) Filter: ((((ymk.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk.apply_start_date) AND ('2023-11-09'::date <= ymk.apply_end_date)) OR (ymk.information_category_code IS NULL)) -> Sort (cost=3541.22..3552.58 rows=4542 width=21) (actual time=1621.878..1622.115 rows=228 loops=2) Sort Key: pm.original_store_code, ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code Sort Method: external merge Disk: 13800kB Worker 0: Sort Method: quicksort Memory: 25kB -> Merge Join (cost=3008.64..3265.32 rows=4542 width=21) (actual time=29.380..351.880 rows=226995 loops=2) Merge Cond: (((ym.pattern_type)::text = (pm.pattern_type)::text) AND ((ym.pattern_code)::text = (pm.pattern_code)::text)) -> Sort (cost=2045.25..2090.67 rows=18168 width=21) (actual time=26.306..27.871 rows=15434 loops=2) Sort Key: ym.pattern_type, ym.pattern_code Sort Method: quicksort Memory: 3181kB Worker 0: Sort Method: quicksort Memory: 25kB -> Parallel Seq Scan on m_reading_number_by_pattern_1109_036 ym (cost=0.00..759.94 rows=18168 width=21) (actual time=0.018..5.019 rows=15443 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '1109_036'::text)) -> Sort (cost=963.39..988.39 rows=10000 width=14) (actual time=6.142..27.592 rows=455991 loops=1) Sort Key: pm.pattern_type, pm.pattern_code Sort Method: quicksort Memory: 853kB -> Seq Scan on m_pattern_10010001 pm (cost=0.00..299.00 rows=10000 width=14) (actual time=0.034..2.930 rows=10000 loops=1) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '10010001'::text)) -> Sort (cost=26.52..27.32 rows=320 width=102) (actual time=0.041..0.042 rows=1 loops=1) Sort Key: ymk.original_store_code, ymk.host_cycle_code, ymk.store_cycle_code, ymk.information_category_code Sort Method: quicksort Memory: 25kB -> Seq Scan on m_reading_number_by_store ymk (cost=0.00..13.20 rows=320 width=102) (actual time=0.025..0.025 rows=1 loops=1) -> Index Only Scan using m_staff_by_information_order_pkey on m_staff_by_information_order jtm (cost=0.29..0.40 rows=1 width=29) (actual time=0.003..0.003 rows=1 loops=455) Index Cond: ((original_store_code = (pm.original_store_code)::text) AND (host_cycle_code = (ym.host_cycle_code)::text) AND (store_cycle_code = (ym.store_cycle_code)::text) AND (information_category_code = (ym.information_category_code)::text)) Heap Fetches: 0 -> Group (cost=4846.16..4958.88 rows=1 width=29) (actual time=6548.141..6548.193 rows=1 loops=1) Group Key: pm_1.original_store_code, ym_1.group_number, ym_1.host_cycle_code, ym_1.store_cycle_code, ym_1.information_category_code, jtm_1.setting_date -> Incremental Sort (cost=4846.16..4958.85 rows=2 width=29) (actual time=6548.139..6548.191 rows=1 loops=1) Sort Key: pm_1.original_store_code, ym_1.group_number, ym_1.host_cycle_code, ym_1.store_cycle_code, ym_1.information_category_code, jtm_1.setting_date Presorted Key: pm_1.original_store_code, ym_1.group_number Full-sort Groups: 1 Sort Method: quicksort Average Memory: 30kB Peak Memory: 30kB Pre-sorted Groups: 1 Sort Method: quicksort Average Memory: 32kB Peak Memory: 32kB -> Nested Loop Left Join (cost=4733.53..4958.76 rows=1 width=29) (actual time=6546.392..6547.850 rows=97 loops=1) Filter: ((((ymk_1.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk_1.apply_start_date) AND ('2023-11-09'::date <= ymk_1.apply_end_date)) OR (ymk_1.information_category_code IS NULL)) -> Nested Loop (cost=4733.38..4958.55 rows=1 width=29) (actual time=6546.377..6547.735 rows=97 loops=1) -> Group (cost=4732.69..4897.53 rows=1 width=23) (actual time=6546.292..6546.369 rows=24 loops=1) Group Key: pm_2.original_store_code, ym_2.group_number, jtm_1.setting_date, jtm_1.host_cycle_code, jtm_1.store_cycle_code -> Gather Merge (cost=4732.69..4897.52 rows=1 width=23) (actual time=6546.290..6546.349 rows=64 loops=1) Workers Planned: 1 Workers Launched: 1 -> Incremental Sort (cost=3732.68..3897.40 rows=2 width=23) (actual time=3271.945..3271.949 rows=32 loops=2) Sort Key: pm_2.original_store_code, ym_2.group_number, jtm_1.setting_date, jtm_1.host_cycle_code, jtm_1.store_cycle_code Presorted Key: pm_2.original_store_code Full-sort Groups: 1 Sort Method: quicksort Average Memory: 30kB Peak Memory: 30kB Pre-sorted Groups: 1 Sort Method: quicksort Average Memory: 45kB Peak Memory: 45kB Worker 0: Full-sort Groups: 1 Sort Method: quicksort Average Memory: 25kB Peak Memory: 25kB -> Nested Loop (cost=3568.02..3897.31 rows=1 width=23) (actual time=3271.191..3271.688 rows=131 loops=2) -> Merge Left Join (cost=3567.74..3628.53 rows=522 width=21) (actual time=3270.971..3271.034 rows=228 loops=2) Merge Cond: (((pm_2.original_store_code)::text = (ymk_2.original_store_code)::text) AND ((ym_2.host_cycle_code)::text = (ymk_2.host_cycle_code)::text) AND ((ym_2.store_cycle_code)::text = (ymk_2.store_cycle_code)::text) AND ((ym_2.information_category_code)::text = (ymk_2.information_category_code)::text)) Filter: ((((ymk_2.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk_2.apply_start_date) AND ('2023-11-09'::date <= ymk_2.apply_end_date)) OR (ymk_2.information_category_code IS NULL)) -> Sort (cost=3541.22..3552.58 rows=4542 width=21) (actual time=3270.944..3270.968 rows=228 loops=2) Sort Key: pm_2.original_store_code, ym_2.host_cycle_code, ym_2.store_cycle_code, ym_2.information_category_code Sort Method: external sort Disk: 15584kB Worker 0: Sort Method: quicksort Memory: 25kB -> Merge Join (cost=3008.64..3265.32 rows=4542 width=21) (actual time=118.146..277.069 rows=226995 loops=2) Merge Cond: (((ym_2.pattern_type)::text = (pm_2.pattern_type)::text) AND ((ym_2.pattern_code)::text = (pm_2.pattern_code)::text)) -> Sort (cost=2045.25..2090.67 rows=18168 width=21) (actual time=115.483..212.185 rows=15434 loops=2) Sort Key: ym_2.pattern_type, ym_2.pattern_code Sort Method: quicksort Memory: 3181kB Worker 0: Sort Method: quicksort Memory: 25kB -> Parallel Seq Scan on m_reading_number_by_pattern_1109_036 ym_2 (cost=0.00..759.94 rows=18168 width=21) (actual time=0.004..3.696 rows=15443 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '1109_036'::text)) -> Sort (cost=963.39..988.39 rows=10000 width=14) (actual time=5.316..32.792 rows=455991 loops=1) Sort Key: pm_2.pattern_type, pm_2.pattern_code Sort Method: quicksort Memory: 853kB -> Seq Scan on m_pattern_10010001 pm_2 (cost=0.00..299.00 rows=10000 width=14) (actual time=0.027..2.123 rows=10000 loops=1) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '10010001'::text)) -> Sort (cost=26.52..27.32 rows=320 width=102) (actual time=0.045..0.046 rows=1 loops=1) Sort Key: ymk_2.original_store_code, ymk_2.host_cycle_code, ymk_2.store_cycle_code, ymk_2.information_category_code Sort Method: quicksort Memory: 25kB -> Seq Scan on m_reading_number_by_store ymk_2 (cost=0.00..13.20 rows=320 width=102) (actual time=0.024..0.025 rows=1 loops=1) -> Index Scan using m_staff_by_information_order_pkey on m_staff_by_information_order jtm_1 (cost=0.29..0.50 rows=1 width=24) (actual time=0.002..0.002 rows=1 loops=455) Index Cond: (((original_store_code)::text = (pm_2.original_store_code)::text) AND ((host_cycle_code)::text = (ym_2.host_cycle_code)::text) AND ((store_cycle_code)::text = (ym_2.store_cycle_code)::text) AND ((information_category_code)::text = (ym_2.information_category_code)::text)) -> Nested Loop (cost=0.70..60.96 rows=5 width=21) (actual time=0.034..0.056 rows=4 loops=24) -> Index Scan using m_pattern_10010001_pkey on m_pattern_10010001 pm_1 (cost=0.29..15.41 rows=5 width=14) (actual time=0.004..0.005 rows=5 loops=24) Index Cond: (((version)::text = '10010001'::text) AND ((original_store_code)::text = (pm_2.original_store_code)::text) AND (apply_start_date <= '2023-11-09'::date)) Filter: ('2023-11-09'::date <= apply_end_date) -> Index Scan using m_reading_number_by_pattern_1109_036_pkey on m_reading_number_by_pattern_1109_036 ym_1 (cost=0.41..9.10 rows=1 width=21) (actual time=0.009..0.010 rows=1 loops=116) Index Cond: (((pattern_type)::text = (pm_1.pattern_type)::text) AND ((pattern_code)::text = (pm_1.pattern_code)::text) AND (apply_start_date <= '2023-11-09'::date) AND ((host_cycle_code)::text = (jtm_1.host_cycle_code)::text) AND ((store_cycle_code)::text = (jtm_1.store_cycle_code)::text) AND ((group_number)::text = (ym_2.group_number)::text) AND ((version)::text = '1109_036'::text)) Filter: ('2023-11-09'::date <= apply_end_date) -> Index Scan using m_reading_number_by_store_pkey on m_reading_number_by_store ymk_1 (cost=0.15..0.19 rows=1 width=102) (actual time=0.001..0.001 rows=0 loops=97) Index Cond: (((original_store_code)::text = (pm_1.original_store_code)::text) AND ((host_cycle_code)::text = (ym_1.host_cycle_code)::text) AND ((store_cycle_code)::text = (ym_1.store_cycle_code)::text) AND ((information_category_code)::text = (ym_1.information_category_code)::text)) Planning Time: 6.857 ms Execution Time: 9981.633 ms SQL:-- explain(analyze,buffers,verbose) EXPLAIN ANALYZE WITH wk1 AS ( SELECT pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN m_staff_by_information_order AS jtm ON pm.original_store_code = jtm.original_store_code AND ym.host_cycle_code = jtm.host_cycle_code AND ym.store_cycle_code = jtm.store_cycle_code AND ym.information_category_code = jtm.information_category_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code ), WK2 AS ( SELECT pm.original_store_code, ym.group_number, jtm.setting_date, jtm.host_cycle_code, jtm.store_cycle_code FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN m_staff_by_information_order AS jtm ON pm.original_store_code = jtm.original_store_code AND ym.host_cycle_code = jtm.host_cycle_code AND ym.store_cycle_code = jtm.store_cycle_code AND ym.information_category_code = jtm.information_category_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, jtm.setting_date, jtm.host_cycle_code, jtm.store_cycle_code ), wk3 AS ( SELECT pm.original_store_code, ym.group_number, ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code, wk2.setting_date FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN wk2 ON pm.original_store_code = wk2.original_store_code AND ym.group_number = wk2.group_number AND ym.host_cycle_code = wk2.host_cycle_code AND ym.store_cycle_code = wk2.store_cycle_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code, wk2.setting_date ) SELECT wk1.original_store_code, wk3.host_cycle_code, wk3.store_cycle_code, wk3.information_category_code, wk1.staff_code, wk3.setting_date FROM wk1 INNER JOIN wk3 ON wk1.original_store_code = wk3.original_store_code AND wk1.group_number = wk3.group_number AND wk1.host_cycle_code = wk3.host_cycle_code AND wk1.store_cycle_code = wk3.store_cycle_code limit 1 ;
08-19
-- explain(analyze,buffers,verbose) EXPLAIN ANALYZE WITH wk1 AS ( SELECT pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN m_staff_by_information_order AS jtm ON pm.original_store_code = jtm.original_store_code AND ym.host_cycle_code = jtm.host_cycle_code AND ym.store_cycle_code = jtm.store_cycle_code AND ym.information_category_code = jtm.information_category_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code ), WK2 AS ( SELECT pm.original_store_code, ym.group_number, jtm.setting_date, jtm.host_cycle_code, jtm.store_cycle_code FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN m_staff_by_information_order AS jtm ON pm.original_store_code = jtm.original_store_code AND ym.host_cycle_code = jtm.host_cycle_code AND ym.store_cycle_code = jtm.store_cycle_code AND ym.information_category_code = jtm.information_category_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, jtm.setting_date, jtm.host_cycle_code, jtm.store_cycle_code ), wk3 AS ( SELECT pm.original_store_code, ym.group_number, ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code, wk2.setting_date FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN wk2 ON pm.original_store_code = wk2.original_store_code AND ym.group_number = wk2.group_number AND ym.host_cycle_code = wk2.host_cycle_code AND ym.store_cycle_code = wk2.store_cycle_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code, wk2.setting_date ) SELECT wk1.original_store_code, wk3.host_cycle_code, wk3.store_cycle_code, wk3.information_category_code, wk1.staff_code, wk3.setting_date FROM wk1 INNER JOIN wk3 ON wk1.original_store_code = wk3.original_store_code AND wk1.group_number = wk3.group_number AND wk1.host_cycle_code = wk3.host_cycle_code AND wk1.store_cycle_code = wk3.store_cycle_code ; 一直显示连接超时
08-19
新的执行计划看看哪慢:QUERY PLAN Merge Join (cost=13166.94..13167.03 rows=1 width=38) (actual time=7872.404..9014.874 rows=32768 loops=1) Merge Cond: (((pm.original_store_code)::text = (pm_1.original_store_code)::text) AND ((ym.group_number)::text = (ym_1.group_number)::text)) Join Filter: (((ym.host_cycle_code)::text = (ym_1.host_cycle_code)::text) AND ((ym.store_cycle_code)::text = (ym_1.store_cycle_code)::text)) Rows Removed by Join Filter: 122984 -> Group (cost=5669.68..5669.69 rows=1 width=29) (actual time=3346.894..3881.617 rows=5004 loops=1) Group Key: pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code -> Sort (cost=5669.68..5669.68 rows=1 width=29) (actual time=3346.891..3877.207 rows=16777 loops=1) Sort Key: pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code Sort Method: quicksort Memory: 2079kB -> Hash Left Join (cost=5354.20..5669.67 rows=1 width=29) (actual time=3018.486..3855.427 rows=16777 loops=1) Hash Cond: (((pm.original_store_code)::text = (ymk.original_store_code)::text) AND ((ym.host_cycle_code)::text = (ymk.host_cycle_code)::text) AND ((ym.store_cycle_code)::text = (ymk.store_cycle_code)::text) AND ((ym.information_category_code)::text = (ymk.information_category_code)::text)) Filter: ((((ymk.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk.apply_start_date) AND ('2023-11-09'::date <= ymk.apply_end_date)) OR (ymk.information_category_code IS NULL)) -> Gather (cost=5334.60..5649.88 rows=1 width=34) (actual time=3018.434..3850.134 rows=16777 loops=1) Workers Planned: 1 Workers Launched: 1 -> Parallel Hash Join (cost=4334.60..4649.78 rows=1 width=34) (actual time=2858.224..3060.741 rows=8389 loops=2) Hash Cond: (((pm.pattern_type)::text = (ym.pattern_type)::text) AND ((pm.pattern_code)::text = (ym.pattern_code)::text) AND ((pm.original_store_code)::text = (jtm.original_store_code)::text)) -> Parallel Seq Scan on m_pattern_10010001 pm (cost=0.00..226.94 rows=5882 width=14) (actual time=0.030..1.780 rows=5000 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '10010001'::text)) -> Parallel Hash (cost=4333.88..4333.88 rows=41 width=41) (actual time=2791.825..2791.827 rows=1182307 loops=2) Buckets: 65536 (originally 1024) Batches: 64 (originally 1) Memory Usage: 3840kB -> Merge Join (cost=3950.80..4333.88 rows=41 width=41) (actual time=64.775..519.901 rows=1182307 loops=2) Merge Cond: (((ym.host_cycle_code)::text = (jtm.host_cycle_code)::text) AND ((ym.store_cycle_code)::text = (jtm.store_cycle_code)::text) AND ((ym.information_category_code)::text = (jtm.information_category_code)::text)) -> Sort (cost=2045.25..2090.67 rows=18168 width=21) (actual time=26.968..28.654 rows=15434 loops=2) Sort Key: ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code Sort Method: quicksort Memory: 3181kB Worker 0: Sort Method: quicksort Memory: 25kB -> Parallel Seq Scan on m_reading_number_by_pattern_1109_036 ym (cost=0.00..759.94 rows=18168 width=21) (actual time=0.007..8.958 rows=15443 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '1109_036'::text)) -> Sort (cost=1905.55..1955.80 rows=20099 width=29) (actual time=75.601..212.554 rows=2365650 loops=1) Sort Key: jtm.host_cycle_code, jtm.store_cycle_code, jtm.information_category_code Sort Method: quicksort Memory: 2339kB -> Seq Scan on m_staff_by_information_order jtm (cost=0.00..468.99 rows=20099 width=29) (actual time=0.030..6.775 rows=20099 loops=1) -> Hash (cost=13.20..13.20 rows=320 width=102) (actual time=0.027..0.029 rows=1 loops=1) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on m_reading_number_by_store ymk (cost=0.00..13.20 rows=320 width=102) (actual time=0.021..0.022 rows=1 loops=1) -> Materialize (cost=7497.27..7497.30 rows=1 width=29) (actual time=4525.501..5101.215 rows=155752 loops=1) -> Group (cost=7497.27..7497.29 rows=1 width=29) (actual time=4525.490..5089.772 rows=17721 loops=1) Group Key: pm_1.original_store_code, ym_1.group_number, ym_1.host_cycle_code, ym_1.store_cycle_code, ym_1.information_category_code, wk2.setting_date -> Sort (cost=7497.27..7497.27 rows=1 width=29) (actual time=4525.487..5085.106 rows=18085 loops=1) Sort Key: pm_1.original_store_code, ym_1.group_number, ym_1.host_cycle_code, ym_1.store_cycle_code, ym_1.information_category_code, wk2.setting_date Sort Method: quicksort Memory: 2181kB -> Hash Left Join (cost=6163.32..7497.26 rows=1 width=29) (actual time=3309.082..5047.098 rows=18085 loops=1) Hash Cond: (((pm_1.original_store_code)::text = (ymk_1.original_store_code)::text) AND ((ym_1.host_cycle_code)::text = (ymk_1.host_cycle_code)::text) AND ((ym_1.store_cycle_code)::text = (ymk_1.store_cycle_code)::text) AND ((ym_1.information_category_code)::text = (ymk_1.information_category_code)::text)) Filter: ((((ymk_1.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk_1.apply_start_date) AND ('2023-11-09'::date <= ymk_1.apply_end_date)) OR (ymk_1.information_category_code IS NULL)) -> Hash Join (cost=6143.72..7477.47 rows=1 width=29) (actual time=3309.025..5040.124 rows=18085 loops=1) Hash Cond: (((ym_1.pattern_type)::text = (pm_1.pattern_type)::text) AND ((ym_1.pattern_code)::text = (pm_1.pattern_code)::text) AND ((wk2.original_store_code)::text = (pm_1.original_store_code)::text)) -> Hash Join (cost=5669.72..6999.70 rows=1 width=36) (actual time=3303.924..4575.576 rows=2496348 loops=1) Hash Cond: (((ym_1.group_number)::text = (wk2.group_number)::text) AND ((ym_1.host_cycle_code)::text = (wk2.host_cycle_code)::text) AND ((ym_1.store_cycle_code)::text = (wk2.store_cycle_code)::text)) -> Seq Scan on m_reading_number_by_pattern_1109_036 ym_1 (cost=0.00..982.50 rows=30886 width=21) (actual time=0.015..12.938 rows=30886 loops=1) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '1109_036'::text)) -> Hash (cost=5669.70..5669.70 rows=1 width=23) (actual time=3303.897..3862.474 rows=4027 loops=1) Buckets: 4096 (originally 1024) Batches: 1 (originally 1) Memory Usage: 253kB -> Subquery Scan on wk2 (cost=5669.68..5669.70 rows=1 width=23) (actual time=3296.758..3861.178 rows=4027 loops=1) -> Group (cost=5669.68..5669.69 rows=1 width=23) (actual time=3296.756..3860.702 rows=4027 loops=1) Group Key: pm_2.original_store_code, ym_2.group_number, jtm_1.setting_date, jtm_1.host_cycle_code, jtm_1.store_cycle_code -> Sort (cost=5669.68..5669.68 rows=1 width=23) (actual time=3296.753..3856.222 rows=16777 loops=1) Sort Key: pm_2.original_store_code, ym_2.group_number, jtm_1.setting_date, jtm_1.host_cycle_code, jtm_1.store_cycle_code Sort Method: quicksort Memory: 2079kB -> Hash Left Join (cost=5354.20..5669.67 rows=1 width=23) (actual time=2914.666..3831.131 rows=16777 loops=1) Hash Cond: (((pm_2.original_store_code)::text = (ymk_2.original_store_code)::text) AND ((ym_2.host_cycle_code)::text = (ymk_2.host_cycle_code)::text) AND ((ym_2.store_cycle_code)::text = (ymk_2.store_cycle_code)::text) AND ((ym_2.information_category_code)::text = (ymk_2.information_category_code)::text)) Filter: ((((ymk_2.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk_2.apply_start_date) AND ('2023-11-09'::date <= ymk_2.apply_end_date)) OR (ymk_2.information_category_code IS NULL)) -> Gather (cost=5334.60..5649.88 rows=1 width=33) (actual time=2914.613..3824.856 rows=16777 loops=1) Workers Planned: 1 Workers Launched: 1 -> Parallel Hash Join (cost=4334.60..4649.78 rows=1 width=33) (actual time=2839.055..3096.744 rows=8389 loops=2) Hash Cond: (((pm_2.pattern_type)::text = (ym_2.pattern_type)::text) AND ((pm_2.pattern_code)::text = (ym_2.pattern_code)::text) AND ((pm_2.original_store_code)::text = (jtm_1.original_store_code)::text)) -> Parallel Seq Scan on m_pattern_10010001 pm_2 (cost=0.00..226.94 rows=5882 width=14) (actual time=0.034..1.958 rows=5000 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '10010001'::text)) -> Parallel Hash (cost=4333.88..4333.88 rows=41 width=40) (actual time=2749.035..2749.038 rows=1182307 loops=2) Buckets: 65536 (originally 1024) Batches: 64 (originally 1) Memory Usage: 3840kB -> Merge Join (cost=3950.80..4333.88 rows=41 width=40) (actual time=25.227..451.907 rows=1182307 loops=2) Merge Cond: (((ym_2.host_cycle_code)::text = (jtm_1.host_cycle_code)::text) AND ((ym_2.store_cycle_code)::text = (jtm_1.store_cycle_code)::text) AND ((ym_2.information_category_code)::text = (jtm_1.information_category_code)::text)) -> Sort (cost=2045.25..2090.67 rows=18168 width=21) (actual time=12.502..13.951 rows=15434 loops=2) Sort Key: ym_2.host_cycle_code, ym_2.store_cycle_code, ym_2.information_category_code Sort Method: quicksort Memory: 3181kB Worker 0: Sort Method: quicksort Memory: 25kB -> Parallel Seq Scan on m_reading_number_by_pattern_1109_036 ym_2 (cost=0.00..759.94 rows=18168 width=21) (actual time=0.004..3.979 rows=15443 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '1109_036'::text)) -> Sort (cost=1905.55..1955.80 rows=20099 width=24) (actual time=25.441..171.873 rows=2365650 loops=1) Sort Key: jtm_1.host_cycle_code, jtm_1.store_cycle_code, jtm_1.information_category_code Sort Method: quicksort Memory: 2339kB -> Seq Scan on m_staff_by_information_order jtm_1 (cost=0.00..468.99 rows=20099 width=24) (actual time=0.020..3.138 rows=20099 loops=1) -> Hash (cost=13.20..13.20 rows=320 width=102) (actual time=0.035..0.037 rows=1 loops=1) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on m_reading_number_by_store ymk_2 (cost=0.00..13.20 rows=320 width=102) (actual time=0.021..0.022 rows=1 loops=1) -> Hash (cost=299.00..299.00 rows=10000 width=14) (actual time=4.468..4.469 rows=10000 loops=1) Buckets: 16384 Batches: 1 Memory Usage: 578kB -> Seq Scan on m_pattern_10010001 pm_1 (cost=0.00..299.00 rows=10000 width=14) (actual time=0.026..2.351 rows=10000 loops=1) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '10010001'::text)) -> Hash (cost=13.20..13.20 rows=320 width=102) (actual time=0.033..0.034 rows=1 loops=1) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on m_reading_number_by_store ymk_1 (cost=0.00..13.20 rows=320 width=102) (actual time=0.024..0.025 rows=1 loops=1) Planning Time: 8.215 ms Execution Time: 9019.218 ms
08-19
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值