YMK_周报2

文章探讨了大语言模型推理缓慢的原因,重点在于矩阵乘法的内存限制和缓存优化。提出使用草稿模型进行验证,通过贪心解码和采样方法提高效率,但面临草稿模型选择、系统复杂性和采样效率等问题。美杜莎采样作为一种潜在解决方案未来值得关注。

周报

读论文

投机采样

为什么大语言模型(LLM)的推理过程文本生成这么慢?

因为运行大型模型的前向传递很慢,你可能需要依次执行数百次迭代。那么为什么前向传递速度慢?前向传递通常以矩阵乘法为主。内存带宽是此操作的限制 (例如,从 GPU RAM 到 GPU 计算核心)。换句话说,前向传递的瓶颈来自将模型权重加载到设备的计算核心中,而不是来自执行计算本身

每个模型前向传递都会产生下一个 token 的概率,这实际上是一个不完整的描述。在文本生成期间,典型的迭代包括模型接收最新生成的 token 作为输入,加上所有其他先前输入的缓存内部计算,再返回下一个 token 得概率。缓存用于避免冗余计算,从而实现更快的前向传递,但它不是强制性的 (并且可以设置部分使用)。

禁用缓存时:

  • 输入包含到目前为止生成的整个 token 序列
  • 输出包含所有位置的下一个 token 对应的概率分布!

如果输入由前 N 个 token 组成,则第 N 个位置的输出对应于其下一个 token 的概率分布,并且该概率分布忽略了序列中的所有后续 token。在贪心解码的特殊情况下,如果你将生成的序列作为输入传递并将 argmax 运算符应用于生成的概率,你将获得生成的序列。

通俗的讲:解码器 的输入是一个长为N的序列,输出也是长为N的序列,只不过每一位错开一个

在这里插入图片描述

这意味着你可以将模型前向传递用于不同的目的: 除了提供一些 token 来预测下一个标记外,你还可以将序列传递给模型并检查模型是否会生成相同的序列 (或部分相同序列)。

所以我们可以用草稿模型生成token然后大语言模型去验证。步骤如下

  1. 使用贪心解码与草稿模型生成一定数量的候选 token。当第一次调用草稿生成时,生成的候选 token 的数量被初始化为 5。
  2. 使用我们的模型,对候选 token 进行前向计算,获得每个 token 对应的概率。
  3. 使用 token 选择方法 (使用.argmax() 进行贪心搜索或使用 .multinomial() 用于采样方法) 来从概率中选取 next_tokens。
  4. 比较步骤 3 中选择的 next_tokens 和 候选 token 中相同的 token 数量。请注意,我们需要从左到右进行比较, 在第一次不匹配后,后续所有 候选 token都无效。
  5. 使用步骤 4 得到的匹配数量将候选 token 分割。也就是,将输入 tokens 加上刚刚验证得到的正确的 tokens。
  6. 调整下一次迭代中生成的候选 token 的数量 —— 使用启发式方法,如果步骤 3 中所有 token 都匹配,则候选 token 的长度增加 2,否则减少 1。

疑问:所以LLM模型用来验证token的时候只用的是Transformer的解码器?也是前项推理过程的话,其本身和在没有草稿模型的情况下直接进行前向推理在效率上有区别吗?

思考:效率上确实有区别,之前是LLM推理5次,现在是草稿模型推出5次,LLM去验证。直觉上是后面这种效率高一些

草稿模型会弄错一些候选 token。由于任务的自回归性质,一旦草稿模型得到一个错误的 token,所有后续候选 token 都必须无效。但是,你可以使用模型更正错误 token 并反复重复此过程后再次查询草稿模型。即使草稿模型失败了几个 token,文本生成的延迟也会比原始形式小得多。

上面的视频中,LLM把草稿模型预测的 into 更正成了 over 后面的 token 删掉,草稿模型重新预测。

最后讨论一下采样方法

贪心解码适用于以输入为基础的任务 (自动语音识别、翻译、摘要……) 。对于需要大量创造力的开放式任务,例如使用语言模型作为聊天机器人的大多数任务,应该改用采样方法。

超参数:Temperature

我们可以使用采样中的温度系数来控制下一个标记的概率分布有多尖锐。在一种极端情况下,当Temperature接近 0 时,采样将近似于贪心解码,有利于最有可能的 token。在另一个极端,当Temperature设置为远大于 1 的值时,采样将是混乱的,从均匀分布中抽取。因此,低Temperature对你的辅助模型更有利。因为Temperature越大,LLM改正的情况就会越多,草稿模型生成的token的可信长度就会减少。举个例子,草稿模型生成5个token,LLM说其中4个都是错的打回去重新生成,这样效率就变得很低了。

然而,投机采样并非没有挑战:

1. 寻找理想的「草稿模型」(Draft Model):找到一个「小而强大」的草稿模型,与原始模型很好地协调,说起来容易,做起来难。

2. 系统复杂性:在一个系统中托管两个不同的模型会引入多层的复杂性,不论是计算还是操作,尤其是在分布式环境中。

3. 采样效率低:使用投机解码进行采样时,需要使用一种重要性采样方案。这会带来额外的生成开销,尤其是在较高的采样温度下。

这些复杂性和权衡限制了投机解码的广泛采用。因此,虽然投机解码前景广阔,但并未被广泛采用。

于是最近有人提出了美杜莎采样(下周的任务~)

工作

写了一篇投稿的review,佛山的项目继续在跑,加了一个评价指标

现在我们有了执行计划,你分析一下哪慢:QUERY PLAN Limit (cost=9550.97..9800.70 rows=1 width=38) (actual time=9795.278..9795.400 rows=1 loops=1) -> Nested Loop (cost=9550.97..9800.70 rows=1 width=38) (actual time=9795.275..9795.396 rows=1 loops=1) Join Filter: (((pm.original_store_code)::text = (pm_1.original_store_code)::text) AND ((ym.group_number)::text = (ym_1.group_number)::text) AND ((ym.host_cycle_code)::text = (ym_1.host_cycle_code)::text) AND ((ym.store_cycle_code)::text = (ym_1.store_cycle_code)::text)) -> Group (cost=4704.81..4841.78 rows=1 width=29) (actual time=3247.129..3247.199 rows=1 loops=1) Group Key: pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code -> Gather Merge (cost=4704.81..4841.77 rows=1 width=29) (actual time=3247.128..3247.196 rows=1 loops=1) Workers Planned: 1 Workers Launched: 1 -> Incremental Sort (cost=3704.80..3841.65 rows=2 width=29) (actual time=1623.114..1623.117 rows=1 loops=2) Sort Key: pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code Presorted Key: pm.original_store_code Full-sort Groups: 1 Sort Method: quicksort Average Memory: 30kB Peak Memory: 30kB Pre-sorted Groups: 1 Sort Method: quicksort Average Memory: 45kB Peak Memory: 45kB Worker 0: Full-sort Groups: 1 Sort Method: quicksort Average Memory: 25kB Peak Memory: 25kB -> Nested Loop (cost=3568.02..3841.56 rows=1 width=29) (actual time=1622.343..1622.884 rows=131 loops=2) -> Merge Left Join (cost=3567.74..3628.53 rows=522 width=21) (actual time=1621.903..1622.179 rows=228 loops=2) Merge Cond: (((pm.original_store_code)::text = (ymk.original_store_code)::text) AND ((ym.host_cycle_code)::text = (ymk.host_cycle_code)::text) AND ((ym.store_cycle_code)::text = (ymk.store_cycle_code)::text) AND ((ym.information_category_code)::text = (ymk.information_category_code)::text)) Filter: ((((ymk.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk.apply_start_date) AND ('2023-11-09'::date <= ymk.apply_end_date)) OR (ymk.information_category_code IS NULL)) -> Sort (cost=3541.22..3552.58 rows=4542 width=21) (actual time=1621.878..1622.115 rows=228 loops=2) Sort Key: pm.original_store_code, ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code Sort Method: external merge Disk: 13800kB Worker 0: Sort Method: quicksort Memory: 25kB -> Merge Join (cost=3008.64..3265.32 rows=4542 width=21) (actual time=29.380..351.880 rows=226995 loops=2) Merge Cond: (((ym.pattern_type)::text = (pm.pattern_type)::text) AND ((ym.pattern_code)::text = (pm.pattern_code)::text)) -> Sort (cost=2045.25..2090.67 rows=18168 width=21) (actual time=26.306..27.871 rows=15434 loops=2) Sort Key: ym.pattern_type, ym.pattern_code Sort Method: quicksort Memory: 3181kB Worker 0: Sort Method: quicksort Memory: 25kB -> Parallel Seq Scan on m_reading_number_by_pattern_1109_036 ym (cost=0.00..759.94 rows=18168 width=21) (actual time=0.018..5.019 rows=15443 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '1109_036'::text)) -> Sort (cost=963.39..988.39 rows=10000 width=14) (actual time=6.142..27.592 rows=455991 loops=1) Sort Key: pm.pattern_type, pm.pattern_code Sort Method: quicksort Memory: 853kB -> Seq Scan on m_pattern_10010001 pm (cost=0.00..299.00 rows=10000 width=14) (actual time=0.034..2.930 rows=10000 loops=1) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '10010001'::text)) -> Sort (cost=26.52..27.32 rows=320 width=102) (actual time=0.041..0.042 rows=1 loops=1) Sort Key: ymk.original_store_code, ymk.host_cycle_code, ymk.store_cycle_code, ymk.information_category_code Sort Method: quicksort Memory: 25kB -> Seq Scan on m_reading_number_by_store ymk (cost=0.00..13.20 rows=320 width=102) (actual time=0.025..0.025 rows=1 loops=1) -> Index Only Scan using m_staff_by_information_order_pkey on m_staff_by_information_order jtm (cost=0.29..0.40 rows=1 width=29) (actual time=0.003..0.003 rows=1 loops=455) Index Cond: ((original_store_code = (pm.original_store_code)::text) AND (host_cycle_code = (ym.host_cycle_code)::text) AND (store_cycle_code = (ym.store_cycle_code)::text) AND (information_category_code = (ym.information_category_code)::text)) Heap Fetches: 0 -> Group (cost=4846.16..4958.88 rows=1 width=29) (actual time=6548.141..6548.193 rows=1 loops=1) Group Key: pm_1.original_store_code, ym_1.group_number, ym_1.host_cycle_code, ym_1.store_cycle_code, ym_1.information_category_code, jtm_1.setting_date -> Incremental Sort (cost=4846.16..4958.85 rows=2 width=29) (actual time=6548.139..6548.191 rows=1 loops=1) Sort Key: pm_1.original_store_code, ym_1.group_number, ym_1.host_cycle_code, ym_1.store_cycle_code, ym_1.information_category_code, jtm_1.setting_date Presorted Key: pm_1.original_store_code, ym_1.group_number Full-sort Groups: 1 Sort Method: quicksort Average Memory: 30kB Peak Memory: 30kB Pre-sorted Groups: 1 Sort Method: quicksort Average Memory: 32kB Peak Memory: 32kB -> Nested Loop Left Join (cost=4733.53..4958.76 rows=1 width=29) (actual time=6546.392..6547.850 rows=97 loops=1) Filter: ((((ymk_1.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk_1.apply_start_date) AND ('2023-11-09'::date <= ymk_1.apply_end_date)) OR (ymk_1.information_category_code IS NULL)) -> Nested Loop (cost=4733.38..4958.55 rows=1 width=29) (actual time=6546.377..6547.735 rows=97 loops=1) -> Group (cost=4732.69..4897.53 rows=1 width=23) (actual time=6546.292..6546.369 rows=24 loops=1) Group Key: pm_2.original_store_code, ym_2.group_number, jtm_1.setting_date, jtm_1.host_cycle_code, jtm_1.store_cycle_code -> Gather Merge (cost=4732.69..4897.52 rows=1 width=23) (actual time=6546.290..6546.349 rows=64 loops=1) Workers Planned: 1 Workers Launched: 1 -> Incremental Sort (cost=3732.68..3897.40 rows=2 width=23) (actual time=3271.945..3271.949 rows=32 loops=2) Sort Key: pm_2.original_store_code, ym_2.group_number, jtm_1.setting_date, jtm_1.host_cycle_code, jtm_1.store_cycle_code Presorted Key: pm_2.original_store_code Full-sort Groups: 1 Sort Method: quicksort Average Memory: 30kB Peak Memory: 30kB Pre-sorted Groups: 1 Sort Method: quicksort Average Memory: 45kB Peak Memory: 45kB Worker 0: Full-sort Groups: 1 Sort Method: quicksort Average Memory: 25kB Peak Memory: 25kB -> Nested Loop (cost=3568.02..3897.31 rows=1 width=23) (actual time=3271.191..3271.688 rows=131 loops=2) -> Merge Left Join (cost=3567.74..3628.53 rows=522 width=21) (actual time=3270.971..3271.034 rows=228 loops=2) Merge Cond: (((pm_2.original_store_code)::text = (ymk_2.original_store_code)::text) AND ((ym_2.host_cycle_code)::text = (ymk_2.host_cycle_code)::text) AND ((ym_2.store_cycle_code)::text = (ymk_2.store_cycle_code)::text) AND ((ym_2.information_category_code)::text = (ymk_2.information_category_code)::text)) Filter: ((((ymk_2.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk_2.apply_start_date) AND ('2023-11-09'::date <= ymk_2.apply_end_date)) OR (ymk_2.information_category_code IS NULL)) -> Sort (cost=3541.22..3552.58 rows=4542 width=21) (actual time=3270.944..3270.968 rows=228 loops=2) Sort Key: pm_2.original_store_code, ym_2.host_cycle_code, ym_2.store_cycle_code, ym_2.information_category_code Sort Method: external sort Disk: 15584kB Worker 0: Sort Method: quicksort Memory: 25kB -> Merge Join (cost=3008.64..3265.32 rows=4542 width=21) (actual time=118.146..277.069 rows=226995 loops=2) Merge Cond: (((ym_2.pattern_type)::text = (pm_2.pattern_type)::text) AND ((ym_2.pattern_code)::text = (pm_2.pattern_code)::text)) -> Sort (cost=2045.25..2090.67 rows=18168 width=21) (actual time=115.483..212.185 rows=15434 loops=2) Sort Key: ym_2.pattern_type, ym_2.pattern_code Sort Method: quicksort Memory: 3181kB Worker 0: Sort Method: quicksort Memory: 25kB -> Parallel Seq Scan on m_reading_number_by_pattern_1109_036 ym_2 (cost=0.00..759.94 rows=18168 width=21) (actual time=0.004..3.696 rows=15443 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '1109_036'::text)) -> Sort (cost=963.39..988.39 rows=10000 width=14) (actual time=5.316..32.792 rows=455991 loops=1) Sort Key: pm_2.pattern_type, pm_2.pattern_code Sort Method: quicksort Memory: 853kB -> Seq Scan on m_pattern_10010001 pm_2 (cost=0.00..299.00 rows=10000 width=14) (actual time=0.027..2.123 rows=10000 loops=1) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '10010001'::text)) -> Sort (cost=26.52..27.32 rows=320 width=102) (actual time=0.045..0.046 rows=1 loops=1) Sort Key: ymk_2.original_store_code, ymk_2.host_cycle_code, ymk_2.store_cycle_code, ymk_2.information_category_code Sort Method: quicksort Memory: 25kB -> Seq Scan on m_reading_number_by_store ymk_2 (cost=0.00..13.20 rows=320 width=102) (actual time=0.024..0.025 rows=1 loops=1) -> Index Scan using m_staff_by_information_order_pkey on m_staff_by_information_order jtm_1 (cost=0.29..0.50 rows=1 width=24) (actual time=0.002..0.002 rows=1 loops=455) Index Cond: (((original_store_code)::text = (pm_2.original_store_code)::text) AND ((host_cycle_code)::text = (ym_2.host_cycle_code)::text) AND ((store_cycle_code)::text = (ym_2.store_cycle_code)::text) AND ((information_category_code)::text = (ym_2.information_category_code)::text)) -> Nested Loop (cost=0.70..60.96 rows=5 width=21) (actual time=0.034..0.056 rows=4 loops=24) -> Index Scan using m_pattern_10010001_pkey on m_pattern_10010001 pm_1 (cost=0.29..15.41 rows=5 width=14) (actual time=0.004..0.005 rows=5 loops=24) Index Cond: (((version)::text = '10010001'::text) AND ((original_store_code)::text = (pm_2.original_store_code)::text) AND (apply_start_date <= '2023-11-09'::date)) Filter: ('2023-11-09'::date <= apply_end_date) -> Index Scan using m_reading_number_by_pattern_1109_036_pkey on m_reading_number_by_pattern_1109_036 ym_1 (cost=0.41..9.10 rows=1 width=21) (actual time=0.009..0.010 rows=1 loops=116) Index Cond: (((pattern_type)::text = (pm_1.pattern_type)::text) AND ((pattern_code)::text = (pm_1.pattern_code)::text) AND (apply_start_date <= '2023-11-09'::date) AND ((host_cycle_code)::text = (jtm_1.host_cycle_code)::text) AND ((store_cycle_code)::text = (jtm_1.store_cycle_code)::text) AND ((group_number)::text = (ym_2.group_number)::text) AND ((version)::text = '1109_036'::text)) Filter: ('2023-11-09'::date <= apply_end_date) -> Index Scan using m_reading_number_by_store_pkey on m_reading_number_by_store ymk_1 (cost=0.15..0.19 rows=1 width=102) (actual time=0.001..0.001 rows=0 loops=97) Index Cond: (((original_store_code)::text = (pm_1.original_store_code)::text) AND ((host_cycle_code)::text = (ym_1.host_cycle_code)::text) AND ((store_cycle_code)::text = (ym_1.store_cycle_code)::text) AND ((information_category_code)::text = (ym_1.information_category_code)::text)) Planning Time: 6.857 ms Execution Time: 9981.633 ms SQL:-- explain(analyze,buffers,verbose) EXPLAIN ANALYZE WITH wk1 AS ( SELECT pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN m_staff_by_information_order AS jtm ON pm.original_store_code = jtm.original_store_code AND ym.host_cycle_code = jtm.host_cycle_code AND ym.store_cycle_code = jtm.store_cycle_code AND ym.information_category_code = jtm.information_category_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code ), WK2 AS ( SELECT pm.original_store_code, ym.group_number, jtm.setting_date, jtm.host_cycle_code, jtm.store_cycle_code FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN m_staff_by_information_order AS jtm ON pm.original_store_code = jtm.original_store_code AND ym.host_cycle_code = jtm.host_cycle_code AND ym.store_cycle_code = jtm.store_cycle_code AND ym.information_category_code = jtm.information_category_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, jtm.setting_date, jtm.host_cycle_code, jtm.store_cycle_code ), wk3 AS ( SELECT pm.original_store_code, ym.group_number, ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code, wk2.setting_date FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN wk2 ON pm.original_store_code = wk2.original_store_code AND ym.group_number = wk2.group_number AND ym.host_cycle_code = wk2.host_cycle_code AND ym.store_cycle_code = wk2.store_cycle_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code, wk2.setting_date ) SELECT wk1.original_store_code, wk3.host_cycle_code, wk3.store_cycle_code, wk3.information_category_code, wk1.staff_code, wk3.setting_date FROM wk1 INNER JOIN wk3 ON wk1.original_store_code = wk3.original_store_code AND wk1.group_number = wk3.group_number AND wk1.host_cycle_code = wk3.host_cycle_code AND wk1.store_cycle_code = wk3.store_cycle_code limit 1 ;
08-19
新的执行计划看看哪慢:QUERY PLAN Merge Join (cost=13166.94..13167.03 rows=1 width=38) (actual time=7872.404..9014.874 rows=32768 loops=1) Merge Cond: (((pm.original_store_code)::text = (pm_1.original_store_code)::text) AND ((ym.group_number)::text = (ym_1.group_number)::text)) Join Filter: (((ym.host_cycle_code)::text = (ym_1.host_cycle_code)::text) AND ((ym.store_cycle_code)::text = (ym_1.store_cycle_code)::text)) Rows Removed by Join Filter: 122984 -> Group (cost=5669.68..5669.69 rows=1 width=29) (actual time=3346.894..3881.617 rows=5004 loops=1) Group Key: pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code -> Sort (cost=5669.68..5669.68 rows=1 width=29) (actual time=3346.891..3877.207 rows=16777 loops=1) Sort Key: pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code Sort Method: quicksort Memory: 2079kB -> Hash Left Join (cost=5354.20..5669.67 rows=1 width=29) (actual time=3018.486..3855.427 rows=16777 loops=1) Hash Cond: (((pm.original_store_code)::text = (ymk.original_store_code)::text) AND ((ym.host_cycle_code)::text = (ymk.host_cycle_code)::text) AND ((ym.store_cycle_code)::text = (ymk.store_cycle_code)::text) AND ((ym.information_category_code)::text = (ymk.information_category_code)::text)) Filter: ((((ymk.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk.apply_start_date) AND ('2023-11-09'::date <= ymk.apply_end_date)) OR (ymk.information_category_code IS NULL)) -> Gather (cost=5334.60..5649.88 rows=1 width=34) (actual time=3018.434..3850.134 rows=16777 loops=1) Workers Planned: 1 Workers Launched: 1 -> Parallel Hash Join (cost=4334.60..4649.78 rows=1 width=34) (actual time=2858.224..3060.741 rows=8389 loops=2) Hash Cond: (((pm.pattern_type)::text = (ym.pattern_type)::text) AND ((pm.pattern_code)::text = (ym.pattern_code)::text) AND ((pm.original_store_code)::text = (jtm.original_store_code)::text)) -> Parallel Seq Scan on m_pattern_10010001 pm (cost=0.00..226.94 rows=5882 width=14) (actual time=0.030..1.780 rows=5000 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '10010001'::text)) -> Parallel Hash (cost=4333.88..4333.88 rows=41 width=41) (actual time=2791.825..2791.827 rows=1182307 loops=2) Buckets: 65536 (originally 1024) Batches: 64 (originally 1) Memory Usage: 3840kB -> Merge Join (cost=3950.80..4333.88 rows=41 width=41) (actual time=64.775..519.901 rows=1182307 loops=2) Merge Cond: (((ym.host_cycle_code)::text = (jtm.host_cycle_code)::text) AND ((ym.store_cycle_code)::text = (jtm.store_cycle_code)::text) AND ((ym.information_category_code)::text = (jtm.information_category_code)::text)) -> Sort (cost=2045.25..2090.67 rows=18168 width=21) (actual time=26.968..28.654 rows=15434 loops=2) Sort Key: ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code Sort Method: quicksort Memory: 3181kB Worker 0: Sort Method: quicksort Memory: 25kB -> Parallel Seq Scan on m_reading_number_by_pattern_1109_036 ym (cost=0.00..759.94 rows=18168 width=21) (actual time=0.007..8.958 rows=15443 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '1109_036'::text)) -> Sort (cost=1905.55..1955.80 rows=20099 width=29) (actual time=75.601..212.554 rows=2365650 loops=1) Sort Key: jtm.host_cycle_code, jtm.store_cycle_code, jtm.information_category_code Sort Method: quicksort Memory: 2339kB -> Seq Scan on m_staff_by_information_order jtm (cost=0.00..468.99 rows=20099 width=29) (actual time=0.030..6.775 rows=20099 loops=1) -> Hash (cost=13.20..13.20 rows=320 width=102) (actual time=0.027..0.029 rows=1 loops=1) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on m_reading_number_by_store ymk (cost=0.00..13.20 rows=320 width=102) (actual time=0.021..0.022 rows=1 loops=1) -> Materialize (cost=7497.27..7497.30 rows=1 width=29) (actual time=4525.501..5101.215 rows=155752 loops=1) -> Group (cost=7497.27..7497.29 rows=1 width=29) (actual time=4525.490..5089.772 rows=17721 loops=1) Group Key: pm_1.original_store_code, ym_1.group_number, ym_1.host_cycle_code, ym_1.store_cycle_code, ym_1.information_category_code, wk2.setting_date -> Sort (cost=7497.27..7497.27 rows=1 width=29) (actual time=4525.487..5085.106 rows=18085 loops=1) Sort Key: pm_1.original_store_code, ym_1.group_number, ym_1.host_cycle_code, ym_1.store_cycle_code, ym_1.information_category_code, wk2.setting_date Sort Method: quicksort Memory: 2181kB -> Hash Left Join (cost=6163.32..7497.26 rows=1 width=29) (actual time=3309.082..5047.098 rows=18085 loops=1) Hash Cond: (((pm_1.original_store_code)::text = (ymk_1.original_store_code)::text) AND ((ym_1.host_cycle_code)::text = (ymk_1.host_cycle_code)::text) AND ((ym_1.store_cycle_code)::text = (ymk_1.store_cycle_code)::text) AND ((ym_1.information_category_code)::text = (ymk_1.information_category_code)::text)) Filter: ((((ymk_1.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk_1.apply_start_date) AND ('2023-11-09'::date <= ymk_1.apply_end_date)) OR (ymk_1.information_category_code IS NULL)) -> Hash Join (cost=6143.72..7477.47 rows=1 width=29) (actual time=3309.025..5040.124 rows=18085 loops=1) Hash Cond: (((ym_1.pattern_type)::text = (pm_1.pattern_type)::text) AND ((ym_1.pattern_code)::text = (pm_1.pattern_code)::text) AND ((wk2.original_store_code)::text = (pm_1.original_store_code)::text)) -> Hash Join (cost=5669.72..6999.70 rows=1 width=36) (actual time=3303.924..4575.576 rows=2496348 loops=1) Hash Cond: (((ym_1.group_number)::text = (wk2.group_number)::text) AND ((ym_1.host_cycle_code)::text = (wk2.host_cycle_code)::text) AND ((ym_1.store_cycle_code)::text = (wk2.store_cycle_code)::text)) -> Seq Scan on m_reading_number_by_pattern_1109_036 ym_1 (cost=0.00..982.50 rows=30886 width=21) (actual time=0.015..12.938 rows=30886 loops=1) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '1109_036'::text)) -> Hash (cost=5669.70..5669.70 rows=1 width=23) (actual time=3303.897..3862.474 rows=4027 loops=1) Buckets: 4096 (originally 1024) Batches: 1 (originally 1) Memory Usage: 253kB -> Subquery Scan on wk2 (cost=5669.68..5669.70 rows=1 width=23) (actual time=3296.758..3861.178 rows=4027 loops=1) -> Group (cost=5669.68..5669.69 rows=1 width=23) (actual time=3296.756..3860.702 rows=4027 loops=1) Group Key: pm_2.original_store_code, ym_2.group_number, jtm_1.setting_date, jtm_1.host_cycle_code, jtm_1.store_cycle_code -> Sort (cost=5669.68..5669.68 rows=1 width=23) (actual time=3296.753..3856.222 rows=16777 loops=1) Sort Key: pm_2.original_store_code, ym_2.group_number, jtm_1.setting_date, jtm_1.host_cycle_code, jtm_1.store_cycle_code Sort Method: quicksort Memory: 2079kB -> Hash Left Join (cost=5354.20..5669.67 rows=1 width=23) (actual time=2914.666..3831.131 rows=16777 loops=1) Hash Cond: (((pm_2.original_store_code)::text = (ymk_2.original_store_code)::text) AND ((ym_2.host_cycle_code)::text = (ymk_2.host_cycle_code)::text) AND ((ym_2.store_cycle_code)::text = (ymk_2.store_cycle_code)::text) AND ((ym_2.information_category_code)::text = (ymk_2.information_category_code)::text)) Filter: ((((ymk_2.group_number)::text !~~ '0%'::text) AND ('2023-11-09'::date >= ymk_2.apply_start_date) AND ('2023-11-09'::date <= ymk_2.apply_end_date)) OR (ymk_2.information_category_code IS NULL)) -> Gather (cost=5334.60..5649.88 rows=1 width=33) (actual time=2914.613..3824.856 rows=16777 loops=1) Workers Planned: 1 Workers Launched: 1 -> Parallel Hash Join (cost=4334.60..4649.78 rows=1 width=33) (actual time=2839.055..3096.744 rows=8389 loops=2) Hash Cond: (((pm_2.pattern_type)::text = (ym_2.pattern_type)::text) AND ((pm_2.pattern_code)::text = (ym_2.pattern_code)::text) AND ((pm_2.original_store_code)::text = (jtm_1.original_store_code)::text)) -> Parallel Seq Scan on m_pattern_10010001 pm_2 (cost=0.00..226.94 rows=5882 width=14) (actual time=0.034..1.958 rows=5000 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '10010001'::text)) -> Parallel Hash (cost=4333.88..4333.88 rows=41 width=40) (actual time=2749.035..2749.038 rows=1182307 loops=2) Buckets: 65536 (originally 1024) Batches: 64 (originally 1) Memory Usage: 3840kB -> Merge Join (cost=3950.80..4333.88 rows=41 width=40) (actual time=25.227..451.907 rows=1182307 loops=2) Merge Cond: (((ym_2.host_cycle_code)::text = (jtm_1.host_cycle_code)::text) AND ((ym_2.store_cycle_code)::text = (jtm_1.store_cycle_code)::text) AND ((ym_2.information_category_code)::text = (jtm_1.information_category_code)::text)) -> Sort (cost=2045.25..2090.67 rows=18168 width=21) (actual time=12.502..13.951 rows=15434 loops=2) Sort Key: ym_2.host_cycle_code, ym_2.store_cycle_code, ym_2.information_category_code Sort Method: quicksort Memory: 3181kB Worker 0: Sort Method: quicksort Memory: 25kB -> Parallel Seq Scan on m_reading_number_by_pattern_1109_036 ym_2 (cost=0.00..759.94 rows=18168 width=21) (actual time=0.004..3.979 rows=15443 loops=2) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '1109_036'::text)) -> Sort (cost=1905.55..1955.80 rows=20099 width=24) (actual time=25.441..171.873 rows=2365650 loops=1) Sort Key: jtm_1.host_cycle_code, jtm_1.store_cycle_code, jtm_1.information_category_code Sort Method: quicksort Memory: 2339kB -> Seq Scan on m_staff_by_information_order jtm_1 (cost=0.00..468.99 rows=20099 width=24) (actual time=0.020..3.138 rows=20099 loops=1) -> Hash (cost=13.20..13.20 rows=320 width=102) (actual time=0.035..0.037 rows=1 loops=1) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on m_reading_number_by_store ymk_2 (cost=0.00..13.20 rows=320 width=102) (actual time=0.021..0.022 rows=1 loops=1) -> Hash (cost=299.00..299.00 rows=10000 width=14) (actual time=4.468..4.469 rows=10000 loops=1) Buckets: 16384 Batches: 1 Memory Usage: 578kB -> Seq Scan on m_pattern_10010001 pm_1 (cost=0.00..299.00 rows=10000 width=14) (actual time=0.026..2.351 rows=10000 loops=1) Filter: (('2023-11-09'::date >= apply_start_date) AND ('2023-11-09'::date <= apply_end_date) AND ((version)::text = '10010001'::text)) -> Hash (cost=13.20..13.20 rows=320 width=102) (actual time=0.033..0.034 rows=1 loops=1) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on m_reading_number_by_store ymk_1 (cost=0.00..13.20 rows=320 width=102) (actual time=0.024..0.025 rows=1 loops=1) Planning Time: 8.215 ms Execution Time: 9019.218 ms
08-19
-- explain(analyze,buffers,verbose) EXPLAIN ANALYZE WITH wk1 AS ( SELECT pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN m_staff_by_information_order AS jtm ON pm.original_store_code = jtm.original_store_code AND ym.host_cycle_code = jtm.host_cycle_code AND ym.store_cycle_code = jtm.store_cycle_code AND ym.information_category_code = jtm.information_category_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, jtm.staff_code, ym.host_cycle_code, ym.store_cycle_code ), WK2 AS ( SELECT pm.original_store_code, ym.group_number, jtm.setting_date, jtm.host_cycle_code, jtm.store_cycle_code FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN m_staff_by_information_order AS jtm ON pm.original_store_code = jtm.original_store_code AND ym.host_cycle_code = jtm.host_cycle_code AND ym.store_cycle_code = jtm.store_cycle_code AND ym.information_category_code = jtm.information_category_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, jtm.setting_date, jtm.host_cycle_code, jtm.store_cycle_code ), wk3 AS ( SELECT pm.original_store_code, ym.group_number, ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code, wk2.setting_date FROM m_pattern AS pm INNER JOIN m_reading_number_by_pattern AS ym ON pm.pattern_type = ym.pattern_type AND pm.pattern_code = ym.pattern_code AND ym.version = '1109_036' INNER JOIN wk2 ON pm.original_store_code = wk2.original_store_code AND ym.group_number = wk2.group_number AND ym.host_cycle_code = wk2.host_cycle_code AND ym.store_cycle_code = wk2.store_cycle_code LEFT JOIN m_reading_number_by_store AS ymk ON pm.original_store_code = ymk.original_store_code AND ym.host_cycle_code = ymk.host_cycle_code AND ym.store_cycle_code = ymk.store_cycle_code AND ym.information_category_code = ymk.information_category_code WHERE pm.version = '10010001' AND (( ymk.group_number NOT LIKE '0%' AND '2023-11-09 03:00:00' BETWEEN ymk.apply_start_date AND ymk.apply_end_date ) OR ymk.information_category_code IS NULL ) AND '2023-11-09 03:00:00' BETWEEN pm.apply_start_date AND pm.apply_end_date AND '2023-11-09 03:00:00' BETWEEN ym.apply_start_date AND ym.apply_end_date GROUP BY pm.original_store_code, ym.group_number, ym.host_cycle_code, ym.store_cycle_code, ym.information_category_code, wk2.setting_date ) SELECT wk1.original_store_code, wk3.host_cycle_code, wk3.store_cycle_code, wk3.information_category_code, wk1.staff_code, wk3.setting_date FROM wk1 INNER JOIN wk3 ON wk1.original_store_code = wk3.original_store_code AND wk1.group_number = wk3.group_number AND wk1.host_cycle_code = wk3.host_cycle_code AND wk1.store_cycle_code = wk3.store_cycle_code ; 一直显示连接超时
08-19
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值