灰度共生矩阵 Gray-Level Co-occurrence Matrix(GLCM)原理(一)

目录

重要概念

GLCM属性

1. 该矩阵是方形的,即N*N大小,一般为8*8, 16*16,32*32

2.它的行数和列数与图像的量化级别相同。

3. 该矩阵沿对角线对称。

4. offset位移,距离 ,定义为[row_offset, col_offset]

如何产生对称的共生矩阵GLCM图例说明

水平方向共生矩阵

垂直方向共生矩阵

归一化公式

产生对称的共生矩阵GLCM总结

官方说明


重要概念

neighbour pixel: 共生点
ref pixel:参考点,基准点

灰度共生矩阵(GLCM):是一种统计表格,不是一幅图片

GLCM属性

1. 该矩阵是方形的,即N*N大小,一般为8*8, 16*16,32*32

2.它的行数和列数与图像的量化级别相同。

如果图片是8位深度,即灰度范围[0,255]共2^8=256个级别(level),那么行数与列数都是256;但是这样的矩阵计算量太大,一般会缩放至2^3=82^4=16个级别,也有2^5=32个级别的。

3. 该矩阵沿对角线对称。

如果共生点对(0,2)在图片中出现了一次【往东边计算】,那么反过来,往西边计算,共生点对(2,0)在图片中也出现一次。

这样做的目的是:最东边的元素没有右边的共生点可以计算,而最西边的元素没有左边的共生点,让共生矩阵对称后就不会有此问题。

换句话说,就是从东往西计算一次,再从西往东计算一次。【参考offset位移,距离 ,定义为[row_offset, col_offset]

以下面的原始图为例,以共生点对(0,2)为例,从东往西(0,2)计算出现一次,从西往东(2,0)计算也出现一次,这时不用管谁在左谁在右,只要它们之间的距离是1就行。即水平方向它们出现两次。</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值