TensorFlow随机值:tf.random_normal函数

tf.random_normal 函数 (从正态分布中输出随机值.)
random_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32,seed=None, name=None)

参数:
shape: 一维整数张量或 Python 数组.输出张量的形状.
mean: dtype 类型的0-D张量或 Python 值.正态分布的均值.
stddev:dtype 类型的0-D张量或 Python 值.正态分布的标准差.
dtype: 输出的类型.
seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样
name:操作的名称(可选).

返回:将返回一个指定形状的张量,通过随机的正常值填充.

输入
a = tf.Variable(tf.random_normal([2,2],seed=1))
b = tf.Variable(tf.truncated_normal([2,2],seed=2))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(sess.run(a))
print(sess.run(b)

输出:
[[-0.81131822 1.48459876]
[ 0.06532937 -2.44270396]]
[[-0.85811085 -0.19662298]
[ 0.13895047 -1.22127688]]
指定seed之后,a的值不变,b的值也不变

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值