文章目录
一、卷积和反卷积的计算
卷积层特征图计算
class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True)
feature-map height :
feature-map width :
(stride[0]表示横向移动步长],stride[1]表示纵向移动步长])
反卷积层特征图计算
class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, bias=True)
二、获取网络的任意一层的输出
1.如果一个net中,是一个Sequential直接包起来,首先直接print(net )即可,然后看到类似:
(net1): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
(1): ReLU()
(2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
(3): ReLU()
(4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
(5): ReLU()
(6): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
(7): ReLU()
(8): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
(9): ReLU()
(10): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2))
(11): ReLU()
(12): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1))
)
其中 net1是属性,在定义net的时候,net1用sequential定义了。我们想要拿到net1的第三层层直接 net.net1[2], 因为net1是一个list, 因此这里用[2].
2.用过个sequential来弄:
import torch
from torch.autograd import Variable
import torch.nn
class my_net(nn.Module):
def __init__(self):
super(