第十五周——项目三—归并排序算法的改进

本文介绍了一种改进的归并排序算法,在数据规模较小时采用直接插入排序提高效率。通过自底向上的方式实现归并排序,并对算法进行了详细说明及代码实现。
/*                      
 * Copyright (c) 2017,烟台大学计算机学院                  
 * All right reserved.                      
 * 文件名称:search            
 * 作者:尹娜                     
 * 完成日期:2017年12月19日                      
 * 版本号:v1.0                                       
 * 问题描述:归并排序算法的改进
 * 输入描述:标准函数输入                      
 * 程序输出:归并排序后的数据   
*/      

问题描述: 
  采用归并排序、快速排序等高效算法进行排序,当数据元素较少时(如n≤64),经常直接使用直接插入排序算法等高复杂度的算法。这样做,会带来一定的好处,例如归并排序减少分配、回收临时存储区域的频次,快速排序减少递归层次等。 

  试按上面的思路,重新实现归并排序算法。

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <time.h>
#define MinLength 64        //最短分段长度
typedef int KeyType;    //定义关键字类型
typedef char InfoType[10];
typedef struct          //记录类型
{
    KeyType key;        //关键字项
    InfoType data;      //其他数据项,类型为InfoType
} RecType;              //排序的记录类型定义

void GetData(RecType *&R, int n)
{
    srand(time(0));
    R=(RecType*)malloc(sizeof(RecType)*n);
    for(int i=0; i<n; i++)
        R[i].key= rand();
    printf("生成了%d条记录\n", n);
}

//对R[low..high]按递增有序进行直接插入排序
void InsertSort(RecType R[],int low,int high)
{
    int i,j;
    RecType tmp;
    for (i=low; i<=high; i++)
    {
        tmp=R[i];
        j=i-1;            //从右向左在有序区R[low..i-1]中找R[i]的插入位置
        while (j>=low && tmp.key<R[j].key)
        {
            R[j+1]=R[j]; //将关键字大于R[i].key的记录后移
            j--;
        }
        R[j+1]=tmp;      //在j+1处插入R[i]
    }
}

//合并两个有序表
void Merge(RecType R[],int low,int mid,int high)
{
    RecType *R1;
    int i,j,k;
    i=low,j=mid+1,k=0; //k是R1的下标,i、j分别为第1、2段的下标
    R1=(RecType *)malloc((high-low+1)*sizeof(RecType));  //动态分配空间
    while (i<=mid && j<=high)       //在第1段和第2段均未扫描完时循环
        if (R[i].key<=R[j].key)     //将第1段中的记录放入R1中
        {
            R1[k]=R[i];
            i++;
            k++;
        }
        else                            //将第2段中的记录放入R1中
        {
            R1[k]=R[j];
            j++;
            k++;
        }
    while (i<=mid)                      //将第1段余下部分复制到R1
    {
        R1[k]=R[i];
        i++;
        k++;
    }
    while (j<=high)                 //将第2段余下部分复制到R1
    {
        R1[k]=R[j];
        j++;
        k++;
    }
    for (k=0,i=low; i<=high; k++,i++) //将R1复制回R中
        R[i]=R1[k];
}

//一趟合并
void MergePass(RecType R[],int length,int n)    //对整个数序进行一趟归并
{
    int i;
    for (i=0; i+2*length-1<n; i=i+2*length)     //归并length长的两相邻子表
        Merge(R,i,i+length-1,i+2*length-1);
    if (i+length-1<n)                       //余下两个子表,后者长度小于length
        Merge(R,i,i+length-1,n-1);          //归并这两个子表
}

//自底向上的二路归并算法,但太短的分段,用直接插入完成
void MergeSort(RecType R[],int n)
{
    int length, i;
    for(i=0;i<n;i+=MinLength)   //先按最短分段,用插入排序使之分段有序
        InsertSort(R, i, ((i+MinLength-1<n)?(i+MinLength-1):n));
    for (length=MinLength; length<n; length=2*length) //进行归并
    {
        MergePass(R,length,n);
    }
}
int main()
{
    int i,n=10000;
    RecType *R;
    GetData(R, n);
    MergeSort(R,n);
    printf("排序后(前300个):\n");
    i=0;
    while(i<300)
    {
        printf("%12d ",R[i].key);
        i++;
        if(i%5==0)
            printf("\n");
    }
    printf("\n");
    printf("排序后(后300个):\n");
    i=0;
    while(i<300)
    {
        printf("%12d ",R[n-300+i].key);
        i++;
        if(i%5==0)
            printf("\n");
    }
    printf("\n");
    free(R);
    return 0;
}
运行结果:




基于遗传算法的微电网调度(风、光、蓄电池、微型燃气轮机)(Matlab代码实现)内容概要:本文档介绍了基于遗传算法的微电网调度模型,涵盖风能、太阳能、蓄电池和微型燃气轮机等多种能源形式,并通过Matlab代码实现系统优化调度。该模型旨在解决微电网中多能源协调运行的问题,优化能源分配,降低运行成本,提高可再生能源利用率,同时考虑系统稳定性与经济性。文中详细阐述了遗传算法在求解微电网多目标优化问题中的应用,包括编码方式、适应度函数设计、约束处理及算法流程,并提供了完整的仿真代码供复现与学习。此外,文档还列举了大量相关电力系统优化案例,如负荷预测、储能配置、潮流计算等,展示了广泛的应用背景和技术支撑。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事微电网、智能电网优化研究的工程技术人员。; 使用场景及目标:①学习遗传算法在微电网调度中的具体实现方法;②掌握多能源系统建模与优化调度的技术路线;③为科研项目、毕业设计或实际工程提供可复用的代码框架与算法参考; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注目标函数构建与约束条件处理,同时可参考文档中提供的其他优化案例进行拓展学习,以提升综合应用能力。
项目旨在实现一个简易而实用的RFID智能门禁控制系统。采用经典的51系列单片机——STC89C52作为核心控制器,集成MFRC522射频识别模块来读取RFID卡片信息。用户界面通过128x64像素的LCD显示屏展示相关信息,同时配备了键盘用于密码的输入、验证及修改。此设计结合了RFID技术的高效率识别与单片机的强大控制能力,适用于学习、教学或小型安防项目。 资源包含 源代码:完整C语言编写的源程序,涵盖了RFID识别、密码验证逻辑、显示控制以及用户交互等功能模块。 原理图:详细展示了整个系统的电路连接,包括单片机、MFRC522模块、LCD12864屏幕、按键等组件的电气连接方式,便于理解和自制。 技术特点 RFID技术应用:通过MFRC522模块实现非接触式身份认证,提升门禁安全性与便捷性。 人机交互界面:利用LCD12864显示屏直观展示状态信息,并通过物理按键进行操作,增加了系统的易用性。 密码安全机制:支持用户密码的设定和更改,增强系统安全性。 51单片机编程:适合初学者和专业人士学习51单片机应用开发,尤其是嵌入式系统与物联网领域的实践。 使用指南 环境搭建:确保你有合适的IDE(如Keil uVision)安装以编译51单片机的C代码。 原理图分析:详细阅读原理图,了解各部件间的连接,这对于正确搭建硬件平台至关重要。 编译与上传:将提供的源代码编译无误后,通过编程器或ISP接口烧录到STC89C52单片机中。 硬件组装:根据原理图搭建电路,确保所有组件正确连接。 测试与调试:完成后进行功能测试,可能需要对代码或硬件做适当调整以达到最佳工作状态。
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文研究基于非支配排序的蜣螂优化算法(NSDBO)在微电网多目标优化调度中的应用,旨在解决微电网运行中经济性、环保性与稳定性等多重目标的协同优化问题。文中详细介绍了NSDBO算法的设计与实现过程,结合Matlab代码对微电网调度模型进行仿真验证,展示了该算法在处理复杂多目标优化问题上的有效性与优越性。同时,文档还提供了丰富的科研资源支持,涵盖智能优化算法、机器学习、路径规划、电力系统管理等多个领域,配套网盘资料便于读者复现与拓展研究。; 适合人群:具备一定电力系统或优化算法基础,从事科研工作的研究生、高校教师及工程技术人员,尤其适合关注微电网调度、智能优化算法应用的研究者。; 使用场景及目标:①掌握NSDBO等智能优化算法在多目标问题中的设计与实现方法;②学习微电网多目标调度建模与Matlab仿真技术;③复现论文结果并开展算法改进与对比研究; 阅读建议:建议结合提供的Matlab代码和网盘资源,逐步调试与运行算法程序,重点关注算法流程、目标函数构建与仿真结果分析,同时可参考文中提及的其他优化方法进行横向对比,深化对智能优化在电力系统中应用的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

promise~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值