AM调制—幅度调制
-
概念
使载波的振幅按照所需传送信号的变化规律而变化,但频率保持不变的调制方法。
-
优缺点
传播距离远,但是抗干扰能力差。
-
分类
普通调幅:AM
双边带调幅:DSB-AM
单边带调幅:SSB_AM
残留边带条幅:VSB_AM
-
调制信号表达式 调制信号:UΩ(t) = UΩmcosΩt{调制信号:U_{\Omega}(t)\ = \ \ U_{\Omega m}\cos}{\Omega t}调制信号:UΩ(t) = UΩmcosΩt
载波信号:Uc(t) = Ucmcos(wct)载波信号{:U}_{c}(t)\ \ \ = \ \ U_{\text{cm}}cos(w_{c}t)载波信号:Uc(t) = Ucmcos(wct)
因AM调制的频率不变,采用载波信号的频率,幅度随传送信号变化而变化,因此AM调制后的信号表达式为:
已调信号:UAM(t) = Um(t)cos(wct) 已调信号:U_{\text{AM}}(t)\ = \ U_{m}(t)cos(w_{c}t)\ 已调信号:UAM(t) = Um(t)cos(wct)
=(Ucm+KaUΩmcosΩt)cos(wct) \ = (U_{\text{cm}}{+ K_{a}U}_{\Omega m}\cos\Omega t)cos(w_{c}t)\ =(Ucm+KaUΩmcosΩt)cos(wct)
=Ucm(1+KaUΩmUcmcosΩt)cos(wct) = U_{\text{cm}}(1 + K_{a}\frac{U_{\Omega m}}{U_{\text{cm}}}\cos\Omega t)cos(w_{c}t)\ =Ucm(1+KaUcmUΩmcosΩt)cos(wct)
其中mam_{a}ma为调幅系数:mam_{a}ma=KaUΩmUcmK_{a}\frac{U_{\Omega m}}{U_{\text{cm}}}KaUcmUΩm
调幅信号的幅度最大值:UmU_{m}Um(max)=(Ucm(1+maU_{\text{cm}}(1 + m_{a}Ucm(1+ma)
调幅信号的幅度最小值:UmU_{m}Um(min)=(Ucm(1−maU_{\text{cm}}(1 - m_{a}Ucm(1−ma)
因此当mam_{a}ma>1时,会出现过调制,即调幅信号的最小值出现负值。
将UAM(t) =U_{\text{AM}}(t)\ =UAM(t) =UcmU_{\text{cm}}Ucm(1 + mam_{\text{a}}macosΩ\OmegaΩ t)cos(wct)w_{\text{c}}t)wct)继续展开可得:
UAM(t)=Ucmcos(wct)+12maUcmcos(wc+Ω)t+ 12maUcmcos(wc−Ω)tU_{\text{AM}}(t) = U_{\text{cm}}cos(w_{c}t) + \frac{1}{2}\text{ma}U_{\text{cm}}cos(w_{c} + \Omega)t + \ \frac{1}{2}\text{ma}U_{\text{cm}}cos(w_{c} - \Omega)tUAM(t)=Ucmcos(wct)+21maUcmcos(wc+Ω)t+ 21maUcmcos(wc−Ω)t
因此得知已调波含有三个频率分量wc、wc+Ω(上边频)w_{c}、w_{c} + \Omega(上边频)wc、wc+Ω(上边频)、wc−Ωw_{c} - \Omegawc−Ω(下边频)
FM调制----频率调制
-
概念
载波的幅度不变,瞬时角频率随调制信号做线性变化。
-
优缺点
抗干扰性强,但是传输距离短。
-
调制信号表达式
调制信号:UΩ(t) = UΩmcos(Ωt){调制信号:U_{\Omega}(t)\ = \ \ U_{\Omega m}\cos}{(\Omega t)}调制信号:UΩ(t) = UΩmcos(Ωt)
载波信号:Uc(t) = Ucmcos(wct)载波信号{:U}_{c}(t)\ \ \ = \ \ U_{\text{cm}}cos(w_{c}t)载波信号:Uc(t) = Ucmcos(wct)
FM调制的瞬时角频率为:
wf(t)=wc+kfUΩ(t) = wc+kfUΩmcosΩt=wc+ΔwfmcosΩt \ w_{f}(t) = w_{c} + k_{f}U_{\Omega}(t)\ = \ w_{c} + k_{f}{U_{\Omega m}\cos}{\Omega t} = w_{c} + \mathrm{\Delta}w_{\text{fm}}\cos{\Omega t}\ wf(t)=wc+kfUΩ(t) = wc+kfUΩmcosΩt=wc+ΔwfmcosΩt
其中,wcw_{c}wc为载波角频率;
kfk_{f}kf为调频灵敏度,表示单位调制信号幅度引起的频率变化,单位为rad/s.V或者hz/V;
Δwfm\mathrm{\Delta}w_{\text{fm}}Δwfm为调频波最大角频偏,表示FM波频率摆动的幅度;Δwfm\mathrm{\Delta}w_{\text{fm}}Δwfm=kfUΩmk_{f}U_{\Omega m}kfUΩm
调频系数 mf=ΔwfmΩ=kfUΩmΩ=ΔfmF=Δφfm调频系数\ m_{f} = \frac{\mathrm{\Delta}w_{\text{fm}}}{\Omega} = \frac{k_{f}U_{\Omega m}}{\Omega} = \frac{\mathrm{\Delta}f_{m}}{F} = \mathrm{\Delta}\varphi_{\text{fm}}调频系数 mf=ΩΔwfm=ΩkfUΩm=FΔfm=Δφfm,时调频时在载波信号的相位加上附加的最大相位偏移,与 UΩm\ U_{\Omega m} UΩm成正比,与Ω\OmegaΩ成反比。
因此已调信号
Ufm(t)=Ucmcos(wf(t)∗t)=Ucmcos(wct+mf sin(Ωt)){U_{\text{fm}}(t) = U_{\text{cm}}\cos}{(w_{f}(t) \ast t)} = U_{\text{cm}}\cos(w_{c}t + m_{f}\ sin(\Omega t))Ufm(t)=Ucmcos(wf(t)∗t)=Ucmcos(wct+mf sin(Ωt))
转换后为Ufm(t)=Ucmcos(wf(t)∗t)=Ucmcos(wct+kf ∫0tUΩ(t)dt){U_{\text{fm}}(t) = U_{\text{cm}}\cos}{(w_{f}(t) \ast t)} = U_{\text{cm}}\cos(w_{c}t + k_{f}\ \int_{0}^{t}{U_{\Omega}(t)}dt)Ufm(t)=Ucmcos(wf(t)∗t)=Ucmcos(wct+kf ∫0tUΩ(t)dt)
得出结论,调频时,瞬时角频率变化与调制信号成线性关系,瞬时相位的变化与调制信号的积分成线性关系。调频时,频偏反映调制信号的变化规律,相偏正比于调制信号的积分。
从调频波形可知,调频波的波形时等幅的疏密波,波形的疏密反映了调频波瞬时角频率的大小,即调制信号的大小。
PM调制—相位调制
调制信号:UΩ(t) = UΩmcos(Ωt){调制信号:U_{\Omega}(t)\ = \ \ U_{\Omega m}\cos}{(\Omega t)}调制信号:UΩ(t) = UΩmcos(Ωt)
载波信号:Uc(t) = Ucmcos(wct)载波信号{:U}_{c}(t)\ \ \ = \ \ U_{\text{cm}}cos(w_{c}t)载波信号:Uc(t) = Ucmcos(wct)
调相信号的瞬时相位:
φ(t) =wct+kpUΩ(t) = wct+kpUΩmcosΩt\varphi(t)\ = w_{c}t + k_{p}U_{\Omega}(t)\ = \ w_{c}t + k_{p}{U_{\Omega m}\cos}{\Omega t}φ(t) =wct+kpUΩ(t) = wct+kpUΩmcosΩt
瞬时角频率为:
w(t)=dφ(t)dt=wc+kpdUΩ(t) dt=wc+kpUΩ(t) w(t) = {\frac{d\varphi(t)}{\text{dt}} = w_{c} + k_{p}\frac{{dU}_{\Omega}(t)\ }{\text{dt}} = w}_{c} + k_{p}U_{\Omega}(t)\ w(t)=dtdφ(t)=wc+kpdtdUΩ(t) =wc+kpUΩ(t)
其中,kpk_{p}kp为调制系数。
由此可以计算调相波的一般表达式:
Upm(t)=Ucmcos(φ(t))=Ucmcos(wct+kpUΩ(t) ){U_{pm}(t) = U_{\text{cm}}\cos}{(\varphi(t))} = U_{\text{cm}}\cos(w_{c}t + k_{p}U_{\Omega}(t)\ )Upm(t)=Ucmcos(φ(t))=Ucmcos(wct+kpUΩ(t) )