大规模旅行商TSP问题解决方案(基于分层规划,整数规划)

本文提出一种解决大规模旅行商问题(TSP)的分层规划方法,通过层层聚类将问题分解,利用整数规划求解底层城市群的精确路径,并结合局部优化策略,适用于大规模数据集。实验表明,该方法在tsplib数据集上的表现接近10%的精确解损失。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此实验的代码的github
同步至我的阿里云博客(https://yq.aliyun.com/users/1320894660843258)

#分层规划的旅行商问题解决方案
/上周在无意间跟室友讨论到TSP问题时,我觉得应该把这个问题整合一下,并给出自己的解决方案,同时代码公布在github,有人做成其他版本的与其他人探讨共同进步。
无特别说明情况下,聚类指的是kmeans聚类
/

##摘要
本文采用分层规划的思想,层层聚类,直至最底层单个城市群数量满足一定阈值,然后利用整数规划求最底层城市群的精确解,单层之间的城市群路径规划同样采用整数规划求精确解,这里的城市群路径规划指的是城市群的聚类中心之间的路径规划,最高层为闭合路径的TSP问题,以下单层包括底层都为确定起点终点的不闭合TSP问题,这里的不闭合TSP问题的起点终点贪心的由上一级城市群聚类中心求出的路径来确定哪两个城市群相邻,并由此计算此相邻城市群的最近子城市群对。

求出近似路径后再进行局部的随机优化。

/简单的讲,类比在全球寻找一条可以走遍所有城市的最短路,每个城市只能访问一次,我们先找大范围的路径,如亚洲->非洲->欧洲->北美洲->南美洲->大洋洲->亚洲,然后在往下分层,比如非洲,先计算非洲与它的前驱亚洲后继欧洲之间最近的国家对,比如是埃及-伊朗,利比亚-意大利,这样确定了进入非洲的起点埃及,终点利比亚,在非洲国家之间解决走完所有国家且仅访

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值