思路:
DFS,与上一题思考方式一样,这次的root出现在Post-Order的末尾。
Example:
In-Order: 1 2 3 4 5 6
Post-Order: 1 3 2 6 5 4
先从Post-Order末尾找到root,这里是4,然后在In-Order中找到root的位置,左半部分就是root的左子树的元素,右半部分就是root右子树的所有元素,这里1,2,3是root的左子树的元素,5,6是root右子树的元素,依次类推,再构造root的左子树和右子树,并且让root->left = 构造的左子树 & root->right = 构造的右子树。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
private:
//Construct Binary Tree from Inorder and Postorder Traversal
template<typename Iter>
TreeNode* build(Iter iBegin, Iter iEnd, Iter pBegin, Iter pEnd) {
if(iBegin == iEnd) return NULL;
if(pBegin == pEnd) return NULL;
int val = *prev(pEnd);
auto iRoot = find(iBegin, iEnd, val);
TreeNode *root = new TreeNode(*iRoot);
int leftSize = iRoot - iBegin;
root->left = build(iBegin, iRoot, pBegin, pBegin + leftSize);
root->right = build(iRoot + 1, iEnd, pBegin + leftSize, prev(pEnd));
return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
size_t size = postorder.size();
if(size == 0) return NULL;
return build(inorder.begin(), inorder.end(), postorder.begin(), postorder.end());
}
};