Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
- Source Code
#include <stdio.h> #include <math.h> #include <string.h> #include <stdlib.h> #include <iostream> #include <algorithm> #include <set> #include <map> #include <queue> using namespace std; const int inf=0x3f3f3f3f; const int mod=10000; int n = 2; struct node { int mp[20][20]; } init,res; struct node Mult(struct node x, struct node y)// 矩阵相乘 { struct node tmp; int i,j,k; for(i=0; i<n; i++) { for(j=0; j<n; j++) { tmp.mp[i][j]=0; for(k=0; k<n; k++) { tmp.mp[i][j]=(tmp.mp[i][j]+x.mp[i][k]*y.mp[k][j])%mod; } } } return tmp; }; struct node expo(struct node x, int k)//矩阵快速幂 { struct node tmp; int i,j; for(i=0; i<n; i++) { for(j=0; j<n; j++) { if(i==j) { tmp.mp[i][j]=1; } else { tmp.mp[i][j]=0; } } } while(k) { if(k%2 == 1) { tmp=Mult(tmp,x); } x=Mult(x,x); k>>=1; } return tmp; }; int main() { int T,i,j,k; int ans; while(~scanf("%d",&k)) { if(k == -1) { break; } if(k == 0) { printf("0\n"); continue; } init.mp[0][0] = 1; init.mp[0][1] = 1; init.mp[1][0] = 1; init.mp[1][1] = 0; res=expo(init,k); ans = res.mp[0][1]; printf("%d\n",ans); } return 0; }