POJ3070 Fibonacci(矩阵快速幂)

本文介绍了一种高效的方法来计算Fibonacci数列中任意位置的数的最后四位数字,并通过矩阵快速幂算法实现了这一目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B - Fibonacci
Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.







  • Source Code
    #include <stdio.h>
    #include <math.h>
    #include <string.h>
    #include <stdlib.h>
    #include <iostream>
    #include <algorithm>
    #include <set>
    #include <map>
    #include <queue>
    using namespace std;
    const int inf=0x3f3f3f3f;
    const int mod=10000;
    int n = 2;
    struct node
    {
        int mp[20][20];
    } init,res;
    struct node Mult(struct node x, struct node y)// 矩阵相乘
    {
        struct node tmp;
        int i,j,k;
        for(i=0; i<n; i++)
        {
            for(j=0; j<n; j++)
            {
                tmp.mp[i][j]=0;
                for(k=0; k<n; k++)
                {
                    tmp.mp[i][j]=(tmp.mp[i][j]+x.mp[i][k]*y.mp[k][j])%mod;
                }
            }
        }
        return tmp;
    };
    struct node expo(struct node x, int k)//矩阵快速幂
    {
        struct node tmp;
        int i,j;
        for(i=0; i<n; i++)
        {
            for(j=0; j<n; j++)
            {
                if(i==j)
                {
                    tmp.mp[i][j]=1;
                }
                else
                {
                    tmp.mp[i][j]=0;
                }
            }
        }
        while(k)
        {
            if(k%2 == 1)
            {
                tmp=Mult(tmp,x);
            }
            x=Mult(x,x);
            k>>=1;
        }
        return tmp;
    };
    int main()
    {
        int T,i,j,k;
        int ans;
        while(~scanf("%d",&k))
        {
            if(k == -1)
            {
                break;
            }
            if(k == 0)
            {
                printf("0\n");
                continue;
            }
            init.mp[0][0] = 1;
            init.mp[0][1] = 1;
            init.mp[1][0] = 1;
            init.mp[1][1] = 0;
            res=expo(init,k);
            ans = res.mp[0][1];
            printf("%d\n",ans);
        }
    
    return 0;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶孤心丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值