poj 3070 Fibonacci

本文介绍了一种通过构造矩阵并使用快速幂算法优化递推方程求解的过程,适用于解决大规模数据计算问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有个递推方程自己构造 矩阵就可以了。

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int dp[2]={1,0};
const int mod=10000;
struct matrix
{
int f[2][2];
};
matrix mul(matrix a,matrix b)
{
int i,j,k;
matrix s;
memset(s.f,0,sizeof(s.f));
for(i=0;i<2;i++)
for(j=0;j<2;j++)
for(k=0;k<2;k++)
s.f[i][j]=(s.f[i][j]+a.f[i][k]*b.f[k][j])%mod;
return s;
}
void quick_pow(matrix a,int k)
{
matrix s;
int i;
memset(s.f,0,sizeof(s.f));
for(i=0;i<2;i++) s.f[i][i]=1;
while(k){
if(k&1) 
s=mul(s,a);
a=mul(a,a);
k=k>>1;
}
printf("%d\n",s.f[0][0]);
}
int main()
{
int n;
while(scanf("%d",&n),n!=-1)
{
matrix s;
s.f[0][0]=1;s.f[0][1]=1;
s.f[1][0]=1;s.f[1][1]=0;
if(n==0) {
printf("0\n");
continue;
}
quick_pow(s,n-1);
}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值