librosa是一个非常强大的python语音信号处理的第三方库,本文参考的是librosa的官方文档,本文主要总结了一些重要,对我来说非常常用的功能。学会librosa后再也不用python去实现那些复杂的算法了,只需要一句语句就能轻松实现。
先总结一下本文中常用的专业名词:sr:采样率、hop_length:帧移、overlapping:连续帧之间的重叠部分、n_fft:窗口大小、spectrum:频谱、spectrogram:频谱图或叫做语谱图、amplitude:振幅、mono:单声道、stereo:立体声
时域
读取音频
librosa.load(path, sr=22050, mono=True, offset=0.0, duration=None)
读取音频文件。默认采样率是22050,如果要保留音频的原始采样率,使用sr = None。
参数:
- path :音频文件的路径。
- sr :采样率,如果为“None”使用音频自身的采样率
- mono :bool,是否将信号转换为单声道
- offset :float,在此时间之后开始阅读(以秒为单位)
- 持续时间:float,仅加载这么多的音频(以秒为单位)
返回:
- y :音频时间序列
- sr :音频的采样率
重采样
librosa.resample(y, orig_sr, target_sr, fix=True, scale=False)
重新采样从orig_sr到target_sr的时间序列
参数:
- y :音频时间序列。可以是单声道或立体声。
- orig_sr :y的原始采样率
- target_sr :目标采样率
- fix:bool,调整重采样信号的长度,使其大小恰好为len(y)orig_sr∗target_sr=t∗target_sr\frac{len(y)}{orig\_sr}*target\_sr =t*target\_srorig_srlen(y)∗target_sr=t∗target_sr
- scale:bool,缩放重新采样的信号,以使y和y_hat具有大约相等的总能量。
返回:
- y_hat :重采样之后的音频数组
读取时长
librosa.get_duration(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, center=True, filename=None)
计算时间序列的的持续时间(以秒为单位)
参数:
- y :音频时间序列
- sr :y的音频采样率
- S :STFT矩阵或任何STFT衍生的矩阵(例如,色谱图或梅尔频谱图)。根据频谱图输入计算的持续时间仅在达到帧分辨率之前才是准确的。如果需要高精度,则最好直接使用音频时间序列。
- n_fft :S的 FFT窗口大小
- hop_length :S列之间的音频样本数
- center :布尔值
- 如果为True,则S [:, t]的中心为y [t * hop_length]
- 如果为False,则S [:, t]从y[t * hop_length]开始
- filename :如果提供,则所有其他参数都将被忽略,并且持续时间是直接从音频文件中计算得出的。
返回:
- d :持续时间(以秒为单位)
读取采样率
librosa.get_samplerate(path)
参数:
- path :音频文件的路径
- 返回:音频文件的采样率
写音频
librosa.output.write_wav(path, y, sr, norm=False)
将时间序列输出为.wav文件
参数:
- path:保存输出wav文件的路径
- y :音频时间序列。
- sr :y的采样率
- norm:bool,是否启用幅度归一化。将数据缩放到[-1,+1]范围。
在0.8.0以后的版本,librosa都会将这个函数删除,推荐用下面的函数:
import soundfile
soundfile.write(file, data, samplerate)
参数:
- file:保存输出wav文件的路径
- data:音频数据
- samplerate:采样率
过零率
计算音频时间序列的过零率。
librosa.feature.zero_crossing_rate(y, frame_length = 2048, hop_length = 512, center = True)
参数:
- y :音频时间序列
- frame_length :帧长
- hop_length :帧移
- center:bool,如果为True,则通过填充y的边缘来使帧居中。
返回:
- zcr:zcr[0,i]是第i帧中的过零率
y, sr = librosa.load(librosa.util.example_audio_file())
print(librosa.feature.zero_crossing_rate(y))
# array([[ 0.134, 0.139, ..., 0.387, 0.322]])
波形图
librosa.display.waveplot(y, sr=22050, x_axis='time', offset=0.0, ax=None)
绘制波形的幅度包络线
参数:
- y :音频时间序列
- sr :y的采样率
- x_axis :str {‘time’,‘off’,‘none’}或None,如果为“时间”,则在x轴上给定时间刻度线。
- offset:水平偏移(以秒为单位)开始波形图
import librosa.display
import matplotlib.pyplot as plt
y, sr = librosa.load(librosa.util.example_audio_file(), duration=10)
librosa.display.waveplot(y, sr=sr)
plt.show()

频域
短时傅里叶变换
librosa.stft(y, n_fft=2048, hop_length=None, win_length=None, window='hann', center=True, pad_mode='reflect')
短时傅立叶变换(STFT),返回一个复数矩阵D(F,T)
参数:
- y:音频时间序列
- n_fft:FFT窗口大小,n_fft=hop_length+overlapping
- hop_length:帧移,如果未指定,则默认win_length / 4。
- win_length:每一帧音频都由window()加窗。窗长win_length,然后用零填充以匹配N_FFT。默认win_length=n_fft。
- window:字符串,元组,数字,函数 shape =(n_fft, )
- 窗口(字符串,元组或数字);
- 窗函数,例如
scipy.signal.hanning - 长度为n_fft的向量或数组
- center:bool
- 如果为True,则填充信号y,以使帧 D [:, t]以y [t * hop_length]为中心。
- 如果为False,则D [:, t]从y [t * hop_leng

本文介绍了librosa库在Python中的使用,包括读取和重采样音频、计算音频时长、过零率、短时傅里叶变换(STFT)、短时傅里叶逆变换(ISTFT)、幅值和相位处理、功率谱转换以及提取Mel频谱和MFCC特征。librosa为音频分析和处理提供了便捷的接口。
最低0.47元/天 解锁文章
3395

被折叠的 条评论
为什么被折叠?



