第十三周 Prim算法的验证

/*
* Copyright (c) 2015, 烟台大学计算机与控制工程学院
* All rights reserved.
* 文件名称: main.cpp,top.h,1.cpp
* 作者:于东林
* 完成日期:2015年12月30日
* 版本号:codeblocks
*
* 问题描述:  最小生成树的普里姆算法
* 输入描述: 无
* 程序输出: 见运行结果

*/

程序及代码:

#include <stdio.h>
#include <malloc.h>
#define MAXV 100                //最大顶点个数
#define INF 32767               //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
    int no;                     //顶点编号
    InfoType info;              //顶点其他信息,在此存放带权图权值
} VertexType;                   //顶点类型

typedef struct                  //图的定义
{
    int edges[MAXV][MAXV];      //邻接矩阵
    int n,e;                    //顶点数,弧数
    VertexType vexs[MAXV];      //存放顶点信息
} MGraph;                       //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode            //弧的结点结构类型
{
    int adjvex;                 //该弧的终点位置
    struct ANode *nextarc;      //指向下一条弧的指针
    InfoType info;              //该弧的相关信息,这里用于存放权值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //邻接表头结点的类型
{
    Vertex data;                //顶点信息
    int count;                  //存放顶点入度,只在拓扑排序中用
    ArcNode *firstarc;          //指向第一条弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是邻接表类型

typedef struct
{
    AdjList adjlist;            //邻接表
    int n,e;                    //图中顶点数n和边数e
} ALGraph;                      //图的邻接表类型

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g);
void Prim(MGraph g,int v);

#include "top.h"

void ArrayToMat(int *Arr, int n, MGraph &g)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    g.n=n;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
            if(g.edges[i][j]!=0 && g.edges[i][j]!=INF)
                count++;
        }
    g.e=count;
}

void Prim(MGraph g,int v)
{
    int lowcost[MAXV];          //顶点i是否在U中
    int min;
    int closest[MAXV],i,j,k;
    for (i=0; i<g.n; i++)           //给lowcost[]和closest[]置初值
    {
        lowcost[i]=g.edges[v][i];
        closest[i]=v;
    }
    for (i=1; i<g.n; i++)           //找出n-1个顶点
    {
        min=INF;
        for (j=0; j<g.n; j++)     //在(V-U)中找出离U最近的顶点k
            if (lowcost[j]!=0 && lowcost[j]<min)
            {
                min=lowcost[j];
                k=j;            //k记录最近顶点的编号
            }
        printf(" 边(%d,%d)权为:%d\n",closest[k],k,min);
        lowcost[k]=0;           //标记k已经加入U
        for (j=0; j<g.n; j++)       //修改数组lowcost和closest
            if (g.edges[k][j]!=0 && g.edges[k][j]<lowcost[j])
            {
                lowcost[j]=g.edges[k][j];
                closest[j]=k;
            }
    }
}

#include "top.h"
int main()
{
    MGraph g;
    int A[6][6]=
    {
        {0,6,1,5,INF,INF},
        {6,0,5,INF,3,INF},
        {1,5,0,5,6,4},
        {5,INF,5,0,INF,2},
        {INF,3,6,INF,0,6},
        {INF,INF,4,2,6,0}
    };
    ArrayToMat(A[0], 6, g);
    printf("最小生成树构成:\n");
    Prim(g,0);
    return 0;
}
运行结果:

知识点总结:

        Prim算法的原理是首先要选取一个顶点,依据顶点到边权值最小的原则选取下一个顶点,注意在此期间不能构成环,否则就不是最小生成树。

学习心得:

       思考时要动起手来,手脑并用可能会产生意想不到的结果。


本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值