USART串口协议


USART (Universal Synchronous/Asynchronous Receiver/Transmitter)通用同步/异步收发器
USART是STM32内部集成的硬件外设,可根据数据寄存器的一个字节数据自动生成数据帧时序,从TX引脚发送出去,也可自动接收RX引脚的数据帧时序,拼接为一个字节数据,存放在数据寄存器里

自带波特率发生器,最高达4.5Mbits/s
可配置数据位长度(8/9)、停止位长度(0.5/1/1.5/2)

可选校验位(无校验/奇校验/偶校验)
支持同步模式、硬件流控制、DMA、智能卡、IrDA、LIN
STM32F103C8T6 USART资源:USART1(APB2)、USART2(APB1)、USART3(APB1)

串口通信
串口是一种应用十分广泛的通讯接口,串口成本低、容易使用、通信线路简单,可实现两个设备的互相通信I单片机的串口可以使单片机与单片机、单片机与电脑、单片机与各式各样的模块互相通信,极大地扩展了单片机的应用范围,增强了单片机系统的硬件实力

有时钟线的一般是同步通信,比如I2C和SPI,有输入输出一般使全双工,比如USART和SPI

最常见的是TTL电平

USART(Universal Synchronous/Asynchronous Receiver/Transmitter,通用同步/异步收发器)是一种常见的串行通信接口,广泛应用于嵌入式系统和微控制器,USART是一种全双工的串行通信设备,支持同步和异步两种通信模式。它可以根据数据寄存器中的字节数据自动生成数据帧时序,从TX引脚发送出去,也可以自动接收RX引脚的数据帧时序,并将其解码为字节数据

特点

  1. 全双工通信:可以同时进行数据的发送和接收

  • 多种通信模式:支持同步和异步通信

  • 可配置参数:数据位长度(8位或9位)、停止位长度(0.5、1、1.5、2位)、校验位(无校验、奇校验、偶校验)等都可以通过寄存器配置

  • 波特率可调:内置分数波特率发生器,支持多种波特率

  • 支持多种协议:如LIN、IrDA、智能卡协议等

  • 支持DMA:可以实现高速数据传输

应用场景

  1. 设备间通信:用于微控制器与其他设备(如传感器、显示屏、计算机等)之间的数据传输

  • 调试和日志输出:将调试信息从微控制器发送到计算机,便于开发和调试

  • Bootloader和固件更新:通过USART实现微控制器的固件更新

工作原理

  • 发送过程:数据从数据寄存器(TDR)转移到发送移位寄存器,然后一位一位地从TX引脚发送出去

  • 接收过程:RX引脚接收到的数据一位一位地存储到接收移位寄存器中,然后转移到接收数据寄存器(RDR)

USART串口外设

  1. IrDA SIR编解码模块

    • 负责IrDA(红外数据协会)和SIR(串行红外)协议的编解码。

    • 包含TX(发送)和RX(接收)路径,以及IRDA_OUT和IRDA_IN接口。

  2. 发送和接收数据寄存器(TDR和RDR)

    • TDR(发送数据寄存器):用于存储即将发送的数据。

    • RDR(接收数据寄存器):用于存储接收到的数据。

    • 这些寄存器可以通过CPU或DMA(直接内存访问)进行读写操作。

            

这两个寄存器的工作原理就是:

发送端:比如在TDR写入了0x55(0101 0101),硬件检测写入数据检查移位寄存器是否有数据移位,如果没有这个数据就会全部移动到发送移位寄存器,准备发送。

当数据从TDR移动到移位寄存器时,会置一个标志位,叫TXE(TX Empty),检查这个标志位如果是1就可以写入下一个数据了,然后发送移位寄存器就会在下面的发送器控制的驱动下,向右移位,一位一位的把数据输入到TX引脚。

这里是向右移位,低位先行,移位完成后新的数据就会再次自动地从TDR转移到发送移位寄存器里来,如果当前移位没有完成,TDR数据就会进行等待,一旦移位完成,就会立刻转移过来。

接收端

数据从RX引脚通向接收移位寄存器,在接受控制的驱动下,一位一位的读取RX电平,先放在最高位,然后向右移,移动8位就能接受一位字节,接收移位寄存器是从高位往低位这个方向移动,当一个字节移位完成之后,这一个数据就会整体地转移到接受数据寄存器RDR里来,转移过程中置标志位RXNE(RX NOT Empty),接收数据寄存器非空,检测到RXNE为1,就可以把数据读走了

  1. 发送和接收移位寄存器

    • 用于将数据按位发送或接收,与TDR和RDR配合工作。

  2. 硬件数据流控

    • 包括nRTS(请求发送,告诉别人我当前能不能发送)和nCTS(清除发送,接受别人nRTS信号,n代表低电平有效)信号,用于控制数据流。比如接收数据寄存器一直没有读,RTS就会置高电平,对方CTS接收到之后,就会暂停发送,直到这里的接受寄存器被读走

                 那反过来,当我的TX给对方发送数据时,我们CTS就要接到对方的RTS,用于判断对    方,能不能接收

TX和CTS一对,RX和RTS一对,CTS和RTS也要交叉连接

  1. 控制寄存器(CR1, CR2, CR3)

    • CR1:包含USART的基本控制位,如UE(使能)、M(模式选择)、WAKE(唤醒控制)、PCE(奇偶校验使能)、PS(停止位选择)、PEIE(奇偶校验错误中断使能)等。

    • CR2:包含USART地址、停止位配置、CPOL(时钟极性)、CPHA(时钟相位)等控制位。

    • CR3:包含DMAT(DMA传输使能)、DMAR(DMA接收使能)、SCEN(智能卡模式使能)、NACK(否定确认)、HD(半双工模式)、IRLP(红外低功耗)、IREN(红外模式使能)等控制位。

  2. GTPR( guard time and prescaler register,保护时间和预分频寄存器)

    • 用于配置保护时间和波特率预分频。

  3. SCLK控制

    • 用于控制SCLK(串行时钟)的生成,包括CPOL和CPHA的配置。

  4. 发送器和接收器控制

    • 负责控制USART的发送和接收操作,包括TXE(发送数据寄存器空)、TC(传输完成)、RXNE(接收数据寄存器非空)等状态。

  5. 状态寄存器(SR)

    • 包含USART的状态位,如CTS(清除发送)、LBD(LIN断开检测)、TXE(发送数据寄存器空)、TC(传输完成)、RXNE(接收数据寄存器非空)、ORE(接收溢出错误)、NE(噪声错误)、FE(帧错误)、PE(奇偶校验错误)等。

  6. 唤醒单元

    • 实现多设备的串口通信

  7. 引脚

  • 噪声检测

    • 采样来检测噪声。如果在数据位时间内采样到的电平状态不一致(例如,在一个数据位时间内采样到高电平和低电平),则可能表示存在噪声。

    • 通过在数据位时间内进行多次采样可以提高噪声检测的准确性。

  • NE(噪声错误)

    • 图中右上角的“NE”表示噪声错误(Noise Error)。如果在数据位时间内采样到的电平状态不一致,则会触发噪声错误标志,表示接收到的数据可能受到噪声干扰。

 取某一位就是:数字/10^x%10

/10^x就是把右边去掉,%10把左边去掉

1.显示汉字方法,都选UTF-8,在C++写入--no-multibyte-chars参数

2.也可以encoding选择GB2312,重新打开文件,选择GBK编码

 

HEX数据包 :

 添加包头包尾,如果重复较多最好选择固定包长。

 

文本数据包:

 

串口代码:

串口发送&串口发送+接收

第一步:开启时钟,把需要的USART和GPIO时钟打开

第二步:GPIO初始化,把TX配置成复用输出,RX配置成输入

第三步,配置USART(结构体)

第四步:开启USART(只发送),配置中断(接收,在开启USART之前,加上ITConfig和NVIC的代码)

初始化完成后,调用发送函数和接收函数,调用获取标志位的函数

 代码1:串口发送

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

/**
  * 函    数:串口初始化
  * 参    数:无
  * 返 回 值:无
  */
void Serial_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);	//开启USART1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA9引脚初始化为复用推挽输出
	
	/*USART初始化*/
	USART_InitTypeDef USART_InitStructure;					//定义结构体变量
	USART_InitStructure.USART_BaudRate = 9600;				//波特率
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;	//硬件流控制,不需要
	USART_InitStructure.USART_Mode = USART_Mode_Tx;			//模式,选择为发送模式
	USART_InitStructure.USART_Parity = USART_Parity_No;		//奇偶校验,不需要
	USART_InitStructure.USART_StopBits = USART_StopBits_1;	//停止位,选择1位
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;		//字长,选择8位
	USART_Init(USART1, &USART_InitStructure);				//将结构体变量交给USART_Init,配置USART1
	
	/*USART使能*/
	USART_Cmd(USART1, ENABLE);								//使能USART1,串口开始运行
}

/**
  * 函    数:串口发送一个字节
  * 参    数:Byte 要发送的一个字节
  * 返 回 值:无
  */
void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);		//将字节数据写入数据寄存器,写入后USART自动生成时序波形
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);	//等待发送完成
	/*下次写入数据寄存器会自动清除发送完成标志位,故此循环后,无需清除标志位*/
}

/**
  * 函    数:串口发送一个数组
  * 参    数:Array 要发送数组的首地址
  * 参    数:Length 要发送数组的长度
  * 返 回 值:无
  */
void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
	uint16_t i;
	for (i = 0; i < Length; i ++)		//遍历数组
	{
		Serial_SendByte(Array[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:串口发送一个字符串
  * 参    数:String 要发送字符串的首地址
  * 返 回 值:无
  */
void Serial_SendString(char *String)
{
	uint8_t i;
	for (i = 0; String[i] != '\0'; i ++)//遍历字符数组(字符串),遇到字符串结束标志位后停止
	{
		Serial_SendByte(String[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:次方函数(内部使用)
  * 返 回 值:返回值等于X的Y次方
  */
uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
	uint32_t Result = 1;	//设置结果初值为1
	while (Y --)			//执行Y次
	{
		Result *= X;		//将X累乘到结果
	}
	return Result;
}

/**
  * 函    数:串口发送数字
  * 参    数:Number 要发送的数字,范围:0~4294967295
  * 参    数:Length 要发送数字的长度,范围:0~10
  * 返 回 值:无
  */
void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i ++)		//根据数字长度遍历数字的每一位
	{
		Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');	//依次调用Serial_SendByte发送每位数字
	}
}

/**
  * 函    数:使用printf需要重定向的底层函数
  * 参    数:保持原始格式即可,无需变动
  * 返 回 值:保持原始格式即可,无需变动
  */
int fputc(int ch, FILE *f)
{
	Serial_SendByte(ch);			//将printf的底层重定向到自己的发送字节函数
	return ch;
}

/**
  * 函    数:自己封装的prinf函数
  * 参    数:format 格式化字符串
  * 参    数:... 可变的参数列表
  * 返 回 值:无
  */
void Serial_Printf(char *format, ...)
{
	char String[100];				//定义字符数组
	va_list arg;					//定义可变参数列表数据类型的变量arg
	va_start(arg, format);			//从format开始,接收参数列表到arg变量
	vsprintf(String, format, arg);	//使用vsprintf打印格式化字符串和参数列表到字符数组中
	va_end(arg);					//结束变量arg
	Serial_SendString(String);		//串口发送字符数组(字符串)
}
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"

int main(void)
{
	/*模块初始化*/
	OLED_Init();						//OLED初始化
	
	Serial_Init();						//串口初始化
	
	/*串口基本函数*/
	Serial_SendByte(0x41);				//串口发送一个字节数据0x41
	
	uint8_t MyArray[] = {0x42, 0x43, 0x44, 0x45};	//定义数组
	Serial_SendArray(MyArray, 4);		//串口发送一个数组
	
	Serial_SendString("\r\nNum1=");		//串口发送字符串
	
	Serial_SendNumber(111, 3);			//串口发送数字
	
	/*下述3种方法可实现printf的效果*/
	
	/*方法1:直接重定向printf,但printf函数只有一个,此方法不能在多处使用*/
	printf("\r\nNum2=%d", 222);			//串口发送printf打印的格式化字符串
										//需要重定向fputc函数,并在工程选项里勾选Use MicroLIB
	
	/*方法2:使用sprintf打印到字符数组,再用串口发送字符数组,此方法打印到字符数组,之后想怎么处理都可以,可在多处使用*/
	char String[100];					//定义字符数组
	sprintf(String, "\r\nNum3=%d", 333);//使用sprintf,把格式化字符串打印到字符数组
	Serial_SendString(String);			//串口发送字符数组(字符串)
	
	/*方法3:将sprintf函数封装起来,实现专用的printf,此方法就是把方法2封装起来,更加简洁实用,可在多处使用*/
	Serial_Printf("\r\nNum4=%d", 444);	//串口打印字符串,使用自己封装的函数实现printf的效果
	Serial_Printf("\r\n");
	
	while (1)
	{
		
	}
}

 代码2:串口发送+接收

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

uint8_t Serial_RxData;		//定义串口接收的数据变量
uint8_t Serial_RxFlag;		//定义串口接收的标志位变量

/**
  * 函    数:串口初始化
  * 参    数:无
  * 返 回 值:无
  */
void Serial_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);	//开启USART1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA9引脚初始化为复用推挽输出
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA10引脚初始化为上拉输入
	
	/*USART初始化*/
	USART_InitTypeDef USART_InitStructure;					//定义结构体变量
	USART_InitStructure.USART_BaudRate = 9600;				//波特率
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;	//硬件流控制,不需要
	USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;	//模式,发送模式和接收模式均选择
	USART_InitStructure.USART_Parity = USART_Parity_No;		//奇偶校验,不需要
	USART_InitStructure.USART_StopBits = USART_StopBits_1;	//停止位,选择1位
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;		//字长,选择8位
	USART_Init(USART1, &USART_InitStructure);				//将结构体变量交给USART_Init,配置USART1
	
	/*中断输出配置*/
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);			//开启串口接收数据的中断
	
	/*NVIC中断分组*/
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);			//配置NVIC为分组2
	
	/*NVIC配置*/
	NVIC_InitTypeDef NVIC_InitStructure;					//定义结构体变量
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;		//选择配置NVIC的USART1线
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//指定NVIC线路使能
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;		//指定NVIC线路的抢占优先级为1
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;		//指定NVIC线路的响应优先级为1
	NVIC_Init(&NVIC_InitStructure);							//将结构体变量交给NVIC_Init,配置NVIC外设
	
	/*USART使能*/
	USART_Cmd(USART1, ENABLE);								//使能USART1,串口开始运行
}

/**
  * 函    数:串口发送一个字节
  * 参    数:Byte 要发送的一个字节
  * 返 回 值:无
  */
void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);		//将字节数据写入数据寄存器,写入后USART自动生成时序波形
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);	//等待发送完成
	/*下次写入数据寄存器会自动清除发送完成标志位,故此循环后,无需清除标志位*/
}

/**
  * 函    数:串口发送一个数组
  * 参    数:Array 要发送数组的首地址
  * 参    数:Length 要发送数组的长度
  * 返 回 值:无
  */
void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
	uint16_t i;
	for (i = 0; i < Length; i ++)		//遍历数组
	{
		Serial_SendByte(Array[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:串口发送一个字符串
  * 参    数:String 要发送字符串的首地址
  * 返 回 值:无
  */
void Serial_SendString(char *String)
{
	uint8_t i;
	for (i = 0; String[i] != '\0'; i ++)//遍历字符数组(字符串),遇到字符串结束标志位后停止
	{
		Serial_SendByte(String[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:次方函数(内部使用)
  * 返 回 值:返回值等于X的Y次方
  */
uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
	uint32_t Result = 1;	//设置结果初值为1
	while (Y --)			//执行Y次
	{
		Result *= X;		//将X累乘到结果
	}
	return Result;
}

/**
  * 函    数:串口发送数字
  * 参    数:Number 要发送的数字,范围:0~4294967295
  * 参    数:Length 要发送数字的长度,范围:0~10
  * 返 回 值:无
  */
void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i ++)		//根据数字长度遍历数字的每一位
	{
		Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');	//依次调用Serial_SendByte发送每位数字
	}
}

/**
  * 函    数:使用printf需要重定向的底层函数
  * 参    数:保持原始格式即可,无需变动
  * 返 回 值:保持原始格式即可,无需变动
  */
int fputc(int ch, FILE *f)
{
	Serial_SendByte(ch);			//将printf的底层重定向到自己的发送字节函数
	return ch;
}

/**
  * 函    数:自己封装的prinf函数
  * 参    数:format 格式化字符串
  * 参    数:... 可变的参数列表
  * 返 回 值:无
  */
void Serial_Printf(char *format, ...)
{
	char String[100];				//定义字符数组
	va_list arg;					//定义可变参数列表数据类型的变量arg
	va_start(arg, format);			//从format开始,接收参数列表到arg变量
	vsprintf(String, format, arg);	//使用vsprintf打印格式化字符串和参数列表到字符数组中
	va_end(arg);					//结束变量arg
	Serial_SendString(String);		//串口发送字符数组(字符串)
}

/**
  * 函    数:获取串口接收标志位
  * 参    数:无
  * 返 回 值:串口接收标志位,范围:0~1,接收到数据后,标志位置1,读取后标志位自动清零
  */
uint8_t Serial_GetRxFlag(void)
{
	if (Serial_RxFlag == 1)			//如果标志位为1
	{
		Serial_RxFlag = 0;
		return 1;					//则返回1,并自动清零标志位
	}
	return 0;						//如果标志位为0,则返回0
}

/**
  * 函    数:获取串口接收的数据
  * 参    数:无
  * 返 回 值:接收的数据,范围:0~255
  */
uint8_t Serial_GetRxData(void)
{
	return Serial_RxData;			//返回接收的数据变量
}

/**
  * 函    数:USART1中断函数
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
  *           函数名为预留的指定名称,可以从启动文件复制
  *           请确保函数名正确,不能有任何差异,否则中断函数将不能进入
  */
void USART1_IRQHandler(void)
{
	if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)		//判断是否是USART1的接收事件触发的中断
	{
		Serial_RxData = USART_ReceiveData(USART1);				//读取数据寄存器,存放在接收的数据变量
		Serial_RxFlag = 1;										//置接收标志位变量为1
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);			//清除USART1的RXNE标志位
																//读取数据寄存器会自动清除此标志位
																//如果已经读取了数据寄存器,也可以不执行此代码
	}
}
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"

uint8_t RxData;			//定义用于接收串口数据的变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "RxData:");
	
	/*串口初始化*/
	Serial_Init();		//串口初始化
	
	while (1)
	{
		if (Serial_GetRxFlag() == 1)			//检查串口接收数据的标志位
		{
			RxData = Serial_GetRxData();		//获取串口接收的数据
			Serial_SendByte(RxData);			//串口将收到的数据回传回去,用于测试
			OLED_ShowHexNum(1, 8, RxData, 2);	//显示串口接收的数据
		}
	}
}

代码3:串口收发HEX数据包

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

uint8_t Serial_TxPacket[4];				//定义发送数据包数组,数据包格式:FF 01 02 03 04 FE
uint8_t Serial_RxPacket[4];				//定义接收数据包数组
uint8_t Serial_RxFlag;					//定义接收数据包标志位

/**
  * 函    数:串口初始化
  * 参    数:无
  * 返 回 值:无
  */
void Serial_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);	//开启USART1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA9引脚初始化为复用推挽输出
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA10引脚初始化为上拉输入
	
	/*USART初始化*/
	USART_InitTypeDef USART_InitStructure;					//定义结构体变量
	USART_InitStructure.USART_BaudRate = 9600;				//波特率
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;	//硬件流控制,不需要
	USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;	//模式,发送模式和接收模式均选择
	USART_InitStructure.USART_Parity = USART_Parity_No;		//奇偶校验,不需要
	USART_InitStructure.USART_StopBits = USART_StopBits_1;	//停止位,选择1位
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;		//字长,选择8位
	USART_Init(USART1, &USART_InitStructure);				//将结构体变量交给USART_Init,配置USART1
	
	/*中断输出配置*/
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);			//开启串口接收数据的中断
	
	/*NVIC中断分组*/
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);			//配置NVIC为分组2
	
	/*NVIC配置*/
	NVIC_InitTypeDef NVIC_InitStructure;					//定义结构体变量
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;		//选择配置NVIC的USART1线
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//指定NVIC线路使能
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;		//指定NVIC线路的抢占优先级为1
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;		//指定NVIC线路的响应优先级为1
	NVIC_Init(&NVIC_InitStructure);							//将结构体变量交给NVIC_Init,配置NVIC外设
	
	/*USART使能*/
	USART_Cmd(USART1, ENABLE);								//使能USART1,串口开始运行
}

/**
  * 函    数:串口发送一个字节
  * 参    数:Byte 要发送的一个字节
  * 返 回 值:无
  */
void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);		//将字节数据写入数据寄存器,写入后USART自动生成时序波形
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);	//等待发送完成
	/*下次写入数据寄存器会自动清除发送完成标志位,故此循环后,无需清除标志位*/
}

/**
  * 函    数:串口发送一个数组
  * 参    数:Array 要发送数组的首地址
  * 参    数:Length 要发送数组的长度
  * 返 回 值:无
  */
void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
	uint16_t i;
	for (i = 0; i < Length; i ++)		//遍历数组
	{
		Serial_SendByte(Array[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:串口发送一个字符串
  * 参    数:String 要发送字符串的首地址
  * 返 回 值:无
  */
void Serial_SendString(char *String)
{
	uint8_t i;
	for (i = 0; String[i] != '\0'; i ++)//遍历字符数组(字符串),遇到字符串结束标志位后停止
	{
		Serial_SendByte(String[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:次方函数(内部使用)
  * 返 回 值:返回值等于X的Y次方
  */
uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
	uint32_t Result = 1;	//设置结果初值为1
	while (Y --)			//执行Y次
	{
		Result *= X;		//将X累乘到结果
	}
	return Result;
}

/**
  * 函    数:串口发送数字
  * 参    数:Number 要发送的数字,范围:0~4294967295
  * 参    数:Length 要发送数字的长度,范围:0~10
  * 返 回 值:无
  */
void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i ++)		//根据数字长度遍历数字的每一位
	{
		Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');	//依次调用Serial_SendByte发送每位数字
	}
}

/**
  * 函    数:使用printf需要重定向的底层函数
  * 参    数:保持原始格式即可,无需变动
  * 返 回 值:保持原始格式即可,无需变动
  */
int fputc(int ch, FILE *f)
{
	Serial_SendByte(ch);			//将printf的底层重定向到自己的发送字节函数
	return ch;
}

/**
  * 函    数:自己封装的prinf函数
  * 参    数:format 格式化字符串
  * 参    数:... 可变的参数列表
  * 返 回 值:无
  */
void Serial_Printf(char *format, ...)
{
	char String[100];				//定义字符数组
	va_list arg;					//定义可变参数列表数据类型的变量arg
	va_start(arg, format);			//从format开始,接收参数列表到arg变量
	vsprintf(String, format, arg);	//使用vsprintf打印格式化字符串和参数列表到字符数组中
	va_end(arg);					//结束变量arg
	Serial_SendString(String);		//串口发送字符数组(字符串)
}

/**
  * 函    数:串口发送数据包
  * 参    数:无
  * 返 回 值:无
  * 说    明:调用此函数后,Serial_TxPacket数组的内容将加上包头(FF)包尾(FE)后,作为数据包发送出去
  */
void Serial_SendPacket(void)
{
	Serial_SendByte(0xFF);
	Serial_SendArray(Serial_TxPacket, 4);
	Serial_SendByte(0xFE);
}

/**
  * 函    数:获取串口接收数据包标志位
  * 参    数:无
  * 返 回 值:串口接收数据包标志位,范围:0~1,接收到数据包后,标志位置1,读取后标志位自动清零
  */
uint8_t Serial_GetRxFlag(void)
{
	if (Serial_RxFlag == 1)			//如果标志位为1
	{
		Serial_RxFlag = 0;
		return 1;					//则返回1,并自动清零标志位
	}
	return 0;						//如果标志位为0,则返回0
}

/**
  * 函    数:USART1中断函数
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
  *           函数名为预留的指定名称,可以从启动文件复制
  *           请确保函数名正确,不能有任何差异,否则中断函数将不能进入
  */
void USART1_IRQHandler(void)
{
	static uint8_t RxState = 0;		//定义表示当前状态机状态的静态变量
	static uint8_t pRxPacket = 0;	//定义表示当前接收数据位置的静态变量
	if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)		//判断是否是USART1的接收事件触发的中断
	{
		uint8_t RxData = USART_ReceiveData(USART1);				//读取数据寄存器,存放在接收的数据变量
		
		/*使用状态机的思路,依次处理数据包的不同部分*/
		
		/*当前状态为0,接收数据包包头*/
		if (RxState == 0)
		{
			if (RxData == 0xFF)			//如果数据确实是包头
			{
				RxState = 1;			//置下一个状态
				pRxPacket = 0;			//数据包的位置归零
			}
		}
		/*当前状态为1,接收数据包数据*/
		else if (RxState == 1)
		{
			Serial_RxPacket[pRxPacket] = RxData;	//将数据存入数据包数组的指定位置
			pRxPacket ++;				//数据包的位置自增
			if (pRxPacket >= 4)			//如果收够4个数据
			{
				RxState = 2;			//置下一个状态
			}
		}
		/*当前状态为2,接收数据包包尾*/
		else if (RxState == 2)
		{
			if (RxData == 0xFE)			//如果数据确实是包尾部
			{
				RxState = 0;			//状态归0
				Serial_RxFlag = 1;		//接收数据包标志位置1,成功接收一个数据包
			}
		}
		
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);		//清除标志位
	}
}
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"
#include "Key.h"

uint8_t KeyNum;			//定义用于接收按键键码的变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	Key_Init();			//按键初始化
	Serial_Init();		//串口初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "TxPacket");
	OLED_ShowString(3, 1, "RxPacket");
	
	/*设置发送数据包数组的初始值,用于测试*/
	Serial_TxPacket[0] = 0x01;
	Serial_TxPacket[1] = 0x02;
	Serial_TxPacket[2] = 0x03;
	Serial_TxPacket[3] = 0x04;
	
	while (1)
	{
		KeyNum = Key_GetNum();			//获取按键键码
		if (KeyNum == 1)				//按键1按下
		{
			Serial_TxPacket[0] ++;		//测试数据自增
			Serial_TxPacket[1] ++;
			Serial_TxPacket[2] ++;
			Serial_TxPacket[3] ++;
			
			Serial_SendPacket();		//串口发送数据包Serial_TxPacket
			
			OLED_ShowHexNum(2, 1, Serial_TxPacket[0], 2);	//显示发送的数据包
			OLED_ShowHexNum(2, 4, Serial_TxPacket[1], 2);
			OLED_ShowHexNum(2, 7, Serial_TxPacket[2], 2);
			OLED_ShowHexNum(2, 10, Serial_TxPacket[3], 2);
		}
		
		if (Serial_GetRxFlag() == 1)	//如果接收到数据包
		{
			OLED_ShowHexNum(4, 1, Serial_RxPacket[0], 2);	//显示接收的数据包
			OLED_ShowHexNum(4, 4, Serial_RxPacket[1], 2);
			OLED_ShowHexNum(4, 7, Serial_RxPacket[2], 2);
			OLED_ShowHexNum(4, 10, Serial_RxPacket[3], 2);
		}
	}
}

代码4:串口收发文本数据包

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

char Serial_RxPacket[100];				//定义接收数据包数组,数据包格式"@MSG\r\n"
uint8_t Serial_RxFlag;					//定义接收数据包标志位

/**
  * 函    数:串口初始化
  * 参    数:无
  * 返 回 值:无
  */
void Serial_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);	//开启USART1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA9引脚初始化为复用推挽输出
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA10引脚初始化为上拉输入
	
	/*USART初始化*/
	USART_InitTypeDef USART_InitStructure;					//定义结构体变量
	USART_InitStructure.USART_BaudRate = 9600;				//波特率
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;	//硬件流控制,不需要
	USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;	//模式,发送模式和接收模式均选择
	USART_InitStructure.USART_Parity = USART_Parity_No;		//奇偶校验,不需要
	USART_InitStructure.USART_StopBits = USART_StopBits_1;	//停止位,选择1位
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;		//字长,选择8位
	USART_Init(USART1, &USART_InitStructure);				//将结构体变量交给USART_Init,配置USART1
	
	/*中断输出配置*/
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);			//开启串口接收数据的中断
	
	/*NVIC中断分组*/
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);			//配置NVIC为分组2
	
	/*NVIC配置*/
	NVIC_InitTypeDef NVIC_InitStructure;					//定义结构体变量
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;		//选择配置NVIC的USART1线
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//指定NVIC线路使能
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;		//指定NVIC线路的抢占优先级为1
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;		//指定NVIC线路的响应优先级为1
	NVIC_Init(&NVIC_InitStructure);							//将结构体变量交给NVIC_Init,配置NVIC外设
	
	/*USART使能*/
	USART_Cmd(USART1, ENABLE);								//使能USART1,串口开始运行
}

/**
  * 函    数:串口发送一个字节
  * 参    数:Byte 要发送的一个字节
  * 返 回 值:无
  */
void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);		//将字节数据写入数据寄存器,写入后USART自动生成时序波形
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);	//等待发送完成
	/*下次写入数据寄存器会自动清除发送完成标志位,故此循环后,无需清除标志位*/
}

/**
  * 函    数:串口发送一个数组
  * 参    数:Array 要发送数组的首地址
  * 参    数:Length 要发送数组的长度
  * 返 回 值:无
  */
void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
	uint16_t i;
	for (i = 0; i < Length; i ++)		//遍历数组
	{
		Serial_SendByte(Array[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:串口发送一个字符串
  * 参    数:String 要发送字符串的首地址
  * 返 回 值:无
  */
void Serial_SendString(char *String)
{
	uint8_t i;
	for (i = 0; String[i] != '\0'; i ++)//遍历字符数组(字符串),遇到字符串结束标志位后停止
	{
		Serial_SendByte(String[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:次方函数(内部使用)
  * 返 回 值:返回值等于X的Y次方
  */
uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
	uint32_t Result = 1;	//设置结果初值为1
	while (Y --)			//执行Y次
	{
		Result *= X;		//将X累乘到结果
	}
	return Result;
}

/**
  * 函    数:串口发送数字
  * 参    数:Number 要发送的数字,范围:0~4294967295
  * 参    数:Length 要发送数字的长度,范围:0~10
  * 返 回 值:无
  */
void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i ++)		//根据数字长度遍历数字的每一位
	{
		Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');	//依次调用Serial_SendByte发送每位数字
	}
}

/**
  * 函    数:使用printf需要重定向的底层函数
  * 参    数:保持原始格式即可,无需变动
  * 返 回 值:保持原始格式即可,无需变动
  */
int fputc(int ch, FILE *f)
{
	Serial_SendByte(ch);			//将printf的底层重定向到自己的发送字节函数
	return ch;
}

/**
  * 函    数:自己封装的prinf函数
  * 参    数:format 格式化字符串
  * 参    数:... 可变的参数列表
  * 返 回 值:无
  */
void Serial_Printf(char *format, ...)
{
	char String[100];				//定义字符数组
	va_list arg;					//定义可变参数列表数据类型的变量arg
	va_start(arg, format);			//从format开始,接收参数列表到arg变量
	vsprintf(String, format, arg);	//使用vsprintf打印格式化字符串和参数列表到字符数组中
	va_end(arg);					//结束变量arg
	Serial_SendString(String);		//串口发送字符数组(字符串)
}

/**
  * 函    数:USART1中断函数
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
  *           函数名为预留的指定名称,可以从启动文件复制
  *           请确保函数名正确,不能有任何差异,否则中断函数将不能进入
  */
void USART1_IRQHandler(void)
{
	static uint8_t RxState = 0;		//定义表示当前状态机状态的静态变量
	static uint8_t pRxPacket = 0;	//定义表示当前接收数据位置的静态变量
	if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)	//判断是否是USART1的接收事件触发的中断
	{
		uint8_t RxData = USART_ReceiveData(USART1);			//读取数据寄存器,存放在接收的数据变量
		
		/*使用状态机的思路,依次处理数据包的不同部分*/
		
		/*当前状态为0,接收数据包包头*/
		if (RxState == 0)
		{
			if (RxData == '@' && Serial_RxFlag == 0)		//如果数据确实是包头,并且上一个数据包已处理完毕
			{
				RxState = 1;			//置下一个状态
				pRxPacket = 0;			//数据包的位置归零
			}
		}
		/*当前状态为1,接收数据包数据,同时判断是否接收到了第一个包尾*/
		else if (RxState == 1)
		{
			if (RxData == '\r')			//如果收到第一个包尾
			{
				RxState = 2;			//置下一个状态
			}
			else						//接收到了正常的数据
			{
				Serial_RxPacket[pRxPacket] = RxData;		//将数据存入数据包数组的指定位置
				pRxPacket ++;			//数据包的位置自增
			}
		}
		/*当前状态为2,接收数据包第二个包尾*/
		else if (RxState == 2)
		{
			if (RxData == '\n')			//如果收到第二个包尾
			{
				RxState = 0;			//状态归0
				Serial_RxPacket[pRxPacket] = '\0';			//将收到的字符数据包添加一个字符串结束标志
				Serial_RxFlag = 1;		//接收数据包标志位置1,成功接收一个数据包
			}
		}
		
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);		//清除标志位
	}
}
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"
#include "LED.h"
#include "string.h"

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	LED_Init();			//LED初始化
	Serial_Init();		//串口初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "TxPacket");
	OLED_ShowString(3, 1, "RxPacket");
	
	while (1)
	{
		if (Serial_RxFlag == 1)		//如果接收到数据包
		{
			OLED_ShowString(4, 1, "                ");
			OLED_ShowString(4, 1, Serial_RxPacket);				//OLED清除指定位置,并显示接收到的数据包
			
			/*将收到的数据包与预设的指令对比,以此决定将要执行的操作*/
			if (strcmp(Serial_RxPacket, "LED_ON") == 0)			//如果收到LED_ON指令
			{
				LED1_ON();										//点亮LED
				Serial_SendString("LED_ON_OK\r\n");				//串口回传一个字符串LED_ON_OK
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "LED_ON_OK");				//OLED清除指定位置,并显示LED_ON_OK
			}
			else if (strcmp(Serial_RxPacket, "LED_OFF") == 0)	//如果收到LED_OFF指令
			{
				LED1_OFF();										//熄灭LED
				Serial_SendString("LED_OFF_OK\r\n");			//串口回传一个字符串LED_OFF_OK
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "LED_OFF_OK");			//OLED清除指定位置,并显示LED_OFF_OK
			}
			else						//上述所有条件均不满足,即收到了未知指令
			{
				Serial_SendString("ERROR_COMMAND\r\n");			//串口回传一个字符串ERROR_COMMAND
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "ERROR_COMMAND");			//OLED清除指定位置,并显示ERROR_COMMAND
			}
			
			Serial_RxFlag = 0;			//处理完成后,需要将接收数据包标志位清零,否则将无法接收后续数据包
		}
	}
}

这里的换行一定要打,包头+数据+包尾

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值