Extraction of Entities and Relations调研

本文探讨了实体与关系抽取技术,详细介绍了基于斯坦福解析器的具体实现,包括短语依赖解析、候选产品特征和意见表达提取、关系抽取方法以及树核函数在短语依赖树中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Extraction of Entities and Relations调研,后面将推出基于Stanford Parser 的具体实现


Phrase Dependency Parsing

•      A lot of product features are phrases

•      Phrase dependency parsing  extends traditional dependency parsing tophrase level

•      Relation extraction task can benefit from dependencies within a phrase.


The Approach

•      (1) Constructing phrase dependency  tree from results of chunking and dependency parsing;

•       (2)Extracting candidate product features and candidate opinion expressions;

•      (3) Extracting relations between product features and opinion expressions.

Phrase Dependency Tree

 

•      Toolkit: Stanford parser,MXPOST

Candidate Product Features and Opinion Expressions

•      Product Features

–  All NPs and VPs are selected as candidate product features.

–  Prepositional phrases (PPs) and adjectival phrases (ADJPs) are excluded.

•       Opinion Expressions

–  Use a dictionary which contains 8221opinion expressions to select candidates.

–  The tree distance between product featureand opinion expression in a relation should be less than 5.

RelationExtraction

•      Taking advantage of the kernel methods

•      Instances containing similar relationswill share similar substructures in their dependency trees

•      Generalize the definition by (Culotta andSorensen, 2004) to fit the phrase dependency tree.

Tree kernels fordependency trees

•       List of features assigned to nodes

 

Tree kernels for dependency trees

•       Matching function and similarity function


Kernel function for PDT

•      Add term Kin to handle theinternal nodes of a phrase


Relation Extraction Experiment

•       Corpus and features

•      Restricting nodes by m(ti, tj) is a way toprune the search space of matching subtrees


Relation Extraction Experiment


ILP and SRL Approach


Extract Entity and Opinion on the Forum and Twitter

•       Description of task:Who feels how on which aspects of which entity?

•        Sentiment towards involved entities

•        Sentiment towards participants

•        Extracting sentiment expressions from Twitter

 

Reference

•      Yejin Choi, Eric Breck, and Claire Cardie.2006. Joint extraction of entities and relations for opinion recognition. InProceedings of EMNLP.

•      Aron Culotta and Jeffrey Sorensen. 2004.Dependency tree kernels for relation extraction. In Proceedings of ACL 2004.

•      Yuanbin Wu, et al. 2009. Phrase Dependency Parsing for Opinion Mining.In Proceedings of EMNLP.

ArnetMiner是一个用于提取和挖掘学术社交网络的工具和平台。它旨在通过分析学术文献中的作者、机构、论文和引用等信息,构建出一个具有丰富关系和结构的学术社交网络。这种学术社交网络可以帮助研究人员了解不同学科领域中的合作关系、学术影响力以及研究趋势等。 ArnetMiner的主要功能之一是提取学术文献中的作者和机构信息。它能够识别出文献中作者的姓名和机构,并将它们归类到相应的学术社交网络中。这对于研究人员来说非常有用,因为它们可以了解到某个作者在特定领域中的研究成果和合作伙伴。此外,ArnetMiner还可以分析引用关系,揭示不同论文之间的引用情况,帮助研究人员追踪学术研究的发展脉络。 ArnetMiner还提供了一种挖掘学术社交网络的方法。它利用机器学习和数据挖掘技术,识别出学术社交网络中的关键人物、研究领域以及合作关系等。这些信息可以帮助研究人员了解某个研究领域的核心学者,以及他们的合作伙伴和影响力。此外,ArnetMiner还可以通过分析学术文献的关键词和引文数等指标,评估学术成果的影响力和质量。 总之,ArnetMiner是一个强大的工具和平台,可用于提取和挖掘学术社交网络。它为研究人员提供了一个了解学术界合作关系、研究趋势和影响力的途径,从而促进学术研究的发展和创新。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值