版本要求:
Tensorflow 2.0.0+
tensorflow原生保存的模型不适用于多平台使用,将模型转化为.pb格式,可以更加方便的转化为别的格式,本文主要介绍如何转化.pb格式。
以mnist数据集为例进行讲解:
1. 创建网络模型,训练,保存模型:
inputs = tf.keras.Input(shape=(28,28,1), name='input')
# [28, 28, 1] => [28, 28, 64]
input = tf.keras.layers.Flatten(name="flatten")(inputs)
fc_1 = tf.keras.layers.Dense(512, activation='relu', name='fc_1')(input)
fc_2 = tf.keras.layers.Dense(256, activation='relu', name='fc_2')(fc_1)
pred = tf.keras.layers.Dense(10, activation='softmax', name='output')(fc_2)
model = tf.keras.Model(inputs=inputs, outputs=pred, name='mnist')
model.summary()
将网络搭建出来后,进行训练,然后保存模型,训练过程不再赘述,训练完保存模型,有两种保存方式:
方式1:
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
import tensorflow as tf
# training code -----------------
tf.saved_model.save(obj=model, export_dir="./model")
# Convert Keras model to ConcreteFunction
# 注意这个Input,是自己定义的输入层名
full_model = tf.function(lambda Input: model(Input))
full_model = full_model.get_concrete_function(
tf.TensorSpec(model.inputs[0].shape, model.inputs[0].dtype))
# Get frozen ConcreteFunction
frozen_func = convert_variables_to_constants_v2(full_model)
frozen_func.graph.as_graph_def()
layers = [op.name for op in frozen_func.graph.get_operations()]
print("-" * 50)
print("Frozen model layers: ")
for layer in layers:
print(layer)
print("-" * 50)
print("Frozen model inputs: ")
print