Hdu 1518 Square

Square

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11643    Accepted Submission(s): 3737


Problem Description
Given a set of sticks of various lengths, is it possible to join them end-to-end to form a square?
 

Input
The first line of input contains N, the number of test cases. Each test case begins with an integer 4 <= M <= 20, the number of sticks. M integers follow; each gives the length of a stick - an integer between 1 and 10,000.
 

Output
For each case, output a line containing "yes" if is is possible to form a square; otherwise output "no".
 

Sample Input
  
3 4 1 1 1 1 5 10 20 30 40 50 8 1 7 2 6 4 4 3 5
 

Sample Output
  
yes no yes
 

Source
 
  思路:简单的搜索题目,不过一开始没有思路,参考了网上的思路,从第一根木板开始搜索,如果符合条件,继续往下找,不符合,换另外一根,这里有一点点小的剪枝,就是最大的边不能大于目标的边,所有木板的长度和必须是四的倍数
  AC代码如下:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int maxn=20+5;
int a[maxn],vis[maxn];
int sum,n;
int ans;

void dfs(int cnt,int start,int tsum){

    if(cnt==4){
        ans=1;return ;
    }

    for(int i=start;i<n;i++){
        if(vis[i]) continue;
        if(a[i]+tsum>sum) continue;
        vis[i]=1;
        if(a[i]+tsum==sum) dfs(cnt+1,0,0);
        if(a[i]+tsum<sum) dfs(cnt,i+1,tsum+a[i]);
        vis[i]=0;
        if(ans)  return ;
    }
}
int main(){

    int t;
    scanf("%d",&t);
    while(t--){
       sum=n=0;
       int maxx=0;
       scanf("%d",&n);
       for(int i=0;i<n;i++){
        scanf("%d",&a[i]);
        sum+=a[i];
        if(a[i]>maxx) maxx=a[i];
       }
       if(sum%4){
        printf("no\n");
        continue;
       }
       sum/=4;
       memset(vis,0,sizeof(vis));
       if(sum<maxx){
        printf("no\n");
        continue;
       }
       ans=0;
       dfs(0,0,0);
       if(ans){
        printf("yes\n");
       }
       else printf("no\n");

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值