PCL系列——三维重构之移动立方体算法

本文介绍如何使用PCL库中的移动立方体算法进行三维点云数据的重构。该算法适用于*.pcd和*.ply文件格式,通过计算点云法向量并应用移动立方体算法实现三维模型的重建。

博客新址: http://blog.xuezhisd.top
邮箱:xuezhisd@126.com


PCL系列

说明

通过本教程,我们将会学会:

  • 如果通过移动立方体算法进行三维点云重构。
  • 程序支持两种文件格式:*.pcd*.ply
  • 程序先读取点云文件;然后计算法向量,并将法向量和点云坐标放在一起;接着使用移动立方体算法进行重构,最后显示结果。

操作

  • 在VS2010 中新建一个文件 recon_marchingCubes.cpp,然后将下面的代码复制到文件中。
  • 参照之前的文章,配置项目的属性。设置包含目录和库目录和附加依赖项。
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/io/ply_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/features/normal_3d.h>
#include <pcl/surface/marching_cubes_hoppe.h>
#include <pcl/surface/marching_cubes_rbf.h>
#include <pcl/surface/gp3.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
#include <fstream>
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>

int main (int argc, char** argv)
{
	// 确定文件格式
	char tmpStr[100];
	strcpy(tmpStr,argv[1]);
	char* pext = strrchr(tmpStr, '.');
	std::string extply("ply");
	std::string extpcd("pcd");
	if(pext){
		*pext='\0';
		pext++;
	}
	std::string ext(pext);
	//如果不支持文件格式,退出程序
	if (!((ext == extply)||(ext == extpcd))){
		std::cout << "文件格式不支持!" << std::endl;
		std::cout << "支持文件格式:*.pcd和*.ply!" << std::endl;
		return(-1);
	}

	//根据文件格式选择输入方式
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>) ; //创建点云对象指针,用于存储输入
	if (ext == extply){
		if (pcl::io::loadPLYFile(argv[1] , *cloud) == -1){
			PCL_ERROR("Could not read ply file!\n") ;
			return -1;
		}
	}
	else{
		if (pcl::io::loadPCDFile(argv[1] , *cloud) == -1){
			PCL_ERROR("Could not read pcd file!\n") ;
			return -1;
		}
	}

  // 估计法向量
  pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> n;
  pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>);
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud(cloud);
  n.setInputCloud(cloud);
  n.setSearchMethod(tree);
  n.setKSearch(20);
  n.compute (*normals); //计算法线,结果存储在normals中
  //* normals 不能同时包含点的法向量和表面的曲率

  //将点云和法线放到一起
  pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals (new pcl::PointCloud<pcl::PointNormal>);
  pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
  //* cloud_with_normals = cloud + normals


  //创建搜索树
  pcl::search::KdTree<pcl::PointNormal>::Ptr tree2 (new pcl::search::KdTree<pcl::PointNormal>);
  tree2->setInputCloud (cloud_with_normals);

  //初始化MarchingCubes对象,并设置参数
	pcl::MarchingCubes<pcl::PointNormal> *mc;
	mc = new pcl::MarchingCubesHoppe<pcl::PointNormal> ();
	/*
  if (hoppe_or_rbf == 0)
    mc = new pcl::MarchingCubesHoppe<pcl::PointNormal> ();
  else
  {
    mc = new pcl::MarchingCubesRBF<pcl::PointNormal> ();
    (reinterpret_cast<pcl::MarchingCubesRBF<pcl::PointNormal>*> (mc))->setOffSurfaceDisplacement (off_surface_displacement);
  }
	*/

	//创建多变形网格,用于存储结果
  pcl::PolygonMesh mesh;

  //设置MarchingCubes对象的参数
  mc->setIsoLevel (0.0f);
  mc->setGridResolution (50, 50, 50);
  mc->setPercentageExtendGrid (0.0f);

  //设置搜索方法
  mc->setInputCloud (cloud_with_normals);

	//执行重构,结果保存在mesh中
	mc->reconstruct (mesh);
	
	//保存网格图
	pcl::io::savePLYFile("result.ply", mesh);

	// 显示结果图
  boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
  viewer->setBackgroundColor (0, 0, 0); //设置背景
  viewer->addPolygonMesh(mesh,"my"); //设置显示的网格
  viewer->addCoordinateSystem (1.0); //设置坐标系
  viewer->initCameraParameters ();
  while (!viewer->wasStopped ()){
    viewer->spinOnce (100);
    boost::this_thread::sleep (boost::posix_time::microseconds (100000));
  }

  return (0);
}

  • 重新生成项目。
  • 到改项目的Debug目录下,按住Shift,同时点击鼠标右键,在当前窗口打开CMD窗口。
  • 在命令行中输入recon_marchingCubes.exe bunny.points.ply,执行程序。得到如下图所示的结果。
    移动立方体算法的结果
三维重构中的法线重构是一个重要环节,它在很多三维重构技术方案中都有所涉及。 在基于三维点云的棉花冠层三维重构技术方案里,核心算法就包含法线估计这一步骤,该方案能从无序点云数据中重建出精确的三角网格模型,适合处理棉花冠层这类复杂植物结构,法线估计是构建精确模型的关键部分,通过法线估计为后续的贪婪投影三角化等操作提供基础,以实现从无序点云到三角网格模型的重构 [^1]。 离散点云三维重建是计算机视觉领域的重要技术,虽然基于Matlab实现离散点云数据三维表面重构程序未直接提及法线重构,但法线重构在构建连续、几何上精确的三维模型中可能起到重要作用。因为精确的法线信息有助于更准确地描述点云表面的方向和形状,从而辅助构建出更符合实际的三维模型 [^2]。 在PCL系列三维重构相关内容中,虽然未直接阐述法线重构,但在三维重构的整体流程中,法线重构可能是多个重构算法(如泊松重构、贪婪三角投影算法移动立方体算法等)的前置或辅助步骤。例如在构建光滑曲面模型时,准确的法线信息能帮助算法更好地理解点云表面的曲率和方向,从而生成更合理的三维模型 [^3]。 ### 代码示例 以下是使用PCL库进行点云法线估计的简单示例代码: ```cpp #include <iostream> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/features/normal_3d.h> int main (int argc, char** argv) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>); // 从文件中读取点云数据 if (pcl::io::loadPCDFile<pcl::PointXYZ> ("sample_cloud.pcd", *cloud) == -1) { PCL_ERROR ("Couldn't read the pcd file\n"); return (-1); } // 创建法线估计对象 pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne; ne.setInputCloud (cloud); // 创建一个空的kdtree对象,并把它传递给法线估计对象 pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ()); ne.setSearchMethod (tree); // 输出存储法线的点云 pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>); // 使用半径为3cm的近邻搜索 ne.setRadiusSearch (0.03); // 计算法线 ne.compute (*cloud_normals); return 0; } ```
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值