M3G Performance Tips

本文介绍了使用M3G进行三维图形渲染时的各种性能优化策略,包括利用保留模式减少Java代码调用,优化渲染顺序,合并纹理以节省内存带宽等。此外还详细探讨了如何通过简化节点属性、合理安排粒子效果等方式提升渲染效率。

M3G Performance Tips

 

Retained Mode

Use the retained mode

Do not render objects separately – place them in a world

Minimize the amount of Java code and method calls

Allows the implementation to do view frustum culling, etc

Keep node properties simple

Favor the T R S components over M

Avoid non-uniform scales in S

Avoid using the Alpha factor

 

Rendering Order

Use layers to impose a rendering order

Appearance contains a layer index (an Integer)

Defines a global ordering for submeshes & sprites

Can simplify shader state for backgrounds, overlays

Also enables multipass rendering in retained mode

Optimize the rendering order

Shader state sorting done by the implementation

Use layers to force back-to-front ordering

 

Textures

Use multitexturing to save in T&L and triangle setup

Use mipmapping to save in memory bandwidth

Combine small textures into texture atlases

Use the perspective correction hint (where needed )

       Usually much faster than increasing triangle count

       Nokia: 2% fixed overhead, 20% in worst case

 

Meshes

Minimize the number of objects

Per-mesh overhead is high, per-submesh also fairly high

Lots of small meshes and sprites to render --- bad

Ideally, everything would be in one big triangle strip

But then view frustum culling doesn’t work --- bad

Strike a balance

Merge simple meshes that are close to each other

Criteria for “simple” and “close” will vary by device

 

Shading State

Software vs. hardware implementations

SW: Minimize per-pixel operations

HW: Minimize shading state changes

HW: Do not mix 2D and 3D rendering

 

In general, OpenGL ES performances tips apply

 

Particle Effects                                                                      

Several Problems

Point sprites are not supported

Sprite3D are too much overhead

 

Put all particles in one Mesh

One particle == two triangles

All glued into one triangle strip

Update vertices to animate

       XYZ, RGB, maybe UV

 

 

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值