参考:https://www.jianshu.com/p/e2f62043d02b
利用tensorflow框架和Python语言编写一个简单的卷积神经网络结构CNN来识别手写数字(mnist数据集方便调用)
网络一共包括4层,分别是
- 卷积层conv1+池化pooling
- 卷积层conv2+池化pooling
- 全连接层fc1+dropout
- 全连接层fc1+softmax(预测)
import tensorflow as tf
# 导入tensorflow自带的mnist数据集
from tensorflow.examples.tutorials.mnist import input_data
# 读入
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
def compute_accuracy(v_xs, v_ys):
global prediction
y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep